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ABSTRACT
Despite deep neural network (DNN)’s impressive prediction perfor-
mance in various domains, it is well known now that a set of DNN
models trained with the same model specification and the exact
same training data could produce very different prediction results.
People have relied on the state-of-the-art ensemble method to esti-
mate prediction uncertainty. However, ensembles are expensive to
train and serve for web-scale traffic systems.

In this paper, we seek to advance the understanding of prediction
variation estimated by the ensemble method. Through empirical
experiments on two widely used benchmark datasets Movielens
and Criteo in recommender systems, we observe that prediction
variations come from various randomness sources, including train-
ing data shuffling, and random initialization. When we add more
randomness sources to ensemble members, we see higher predic-
tion variations among these ensemble members, and more accurate
mean prediction. Moreover, we propose to infer prediction variation
from neuron activation strength and demonstrate its strong pre-
diction power. Our approach provides a simple way for prediction
variation estimation, and opens up new opportunities for future
work in many interesting areas (e.g., model-based reinforcement
learning) without relying on serving expensive ensemble models.
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1 INTRODUCTION
Deep neural networks (DNNs) have gained widespread adoption in
recent years across many domains. Despite their impressive per-
formance in various applications, most DNNs today only generate
point predictions. And it is well known that a set of DNN models
trained with the same model specification and the same data can
produce very different predictions [26, 40, 49]. Researchers realize
that point predictions do not tell the whole story and raise questions
about whether DNNs predictions can be trusted [22, 44].

Thus, a growing number of researches are looking into mea-
suring prediction uncertainty for DNNs. Ensemble method is a
state-of-the-art benchmark for prediction uncertainty estimation
to consolidate agreements among the ensemble members and pro-
duce better point predictions [6, 11, 26, 40]. Many researches focus
on whether these point predictions are well-calibrated on either
in-distribution or out-of-distribution (OOD) data [16, 27, 30, 40].
However, there exist prediction disagreements in the ensemble,
which we call prediction variation. For example, different models
in the ensemble often yield different prediction results even on the
same input example.

Ensembles provide us with a good approximation of prediction
variation, but they are computationally expensive as they require
training multiple copies of the same model. At inference time, they
require computing predictions on every example for every ensemble
member, which can be infeasible for real-time large-scale machine
learning systems. Researchers have proposed various techniques
to improve the efficiency of ensembles, such as SnapshotEnsem-
bling [21] and BatchEnsemble [49]. However, as far as we know,
none of these works studies whether we can infer prediction vari-
ation from neuron activation strength collected from the DNN
directly, without running predictions on the same data multiple
times. Here, we useneuron activation strength to indicate DNN’s
neuron output strength, e.g., the neuron output after activation.

We hypothesize that neuron activation strength could be di-
rectly used to infer prediction variation. Our intuition is based on
neuroscience’s Long-Term Potentiation (LTP) process [37] which
states that connections between neurons become stronger with
more frequent activation. LTP is considered as one of the under-
lying mechanisms for learning and memorization. If we imagine
deep networks learn like the brain, some groups of neurons will be
more frequently and/or strongly activated, i.e. strengthened neu-
rons. During learning, these strengthened neurons represent where
the network has learned or memorized better.
Our Goal — In this paper, we aim to advance the understanding of
prediction variations estimated by ensemble models, and look into
the predictive power of neuron activation strength on prediction
variations. To the best of our knowledge, we are the first to conduct
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comprehensive studies on prediction variations from different en-
semble models, and we are also the first to demonstrate that we are
able to infer prediction variation from neuron activation strength.
Challenges —We face the following challenges:

Variation Quantification— There are a variety of prediction prob-
lems. For example, predicting the target rating for a user on a given
movie could be a regression task or a classification task by dividing
the movie ratings into multiple buckets. There is no standard way
to quantify prediction variation for such a variety of tasks.

Variation Sources— Training a set of models with the same model
specification and the same data could produce very different re-
sults. The prediction disagreements are inherently caused by the
nonconvex nature of DNN models in which multiple local minima
exist. In addition, different randomness sources, including random
initialization of DNN parameters, random shuffling of training data,
sub-sampling of training data, and even the hardware itself, could
lead to disagreements. It is often hard to identify the contribution
of each randomness source to prediction variation.

Neuron Activation Strength — We hypothesize that neuron ac-
tivation strength has prediction power to infer a deep network’s
prediction variations. However, it is not straightforward to demon-
strate this prediction power for different prediction problems and
randomness sources.
Our Approach — In this paper, we investigate sources for predic-
tion variation, and by controlling the randomness sources explicitly,
we demonstrate that neuron activation strength has strong pre-
diction power to infer ensemble prediction variations in different
randomness-controlled settings. We demonstrate our findings on
two popular benchmark datasets, MovieLens and Criteo.

First, we quantify prediction variation across different target
tasks, including regression, binary and multi-class classification
tasks. We use standard deviation of the ensemble predictions to
quantify prediction variation for regression and binary classifica-
tion tasks, and KL divergence based score to quantify prediction
distribution disagreement for multi-class classification tasks.

Second, we identify and examine three variation sources of ran-
domness (data shuffling, weight initialization, and data re-sampling).
By explicitly controlling randomness sources, we study their con-
tributions to the performance of mean prediction and prediction
variations. Our results show that every variation source exhibits
a non-negligible and different contribution towards the total pre-
diction variation. Ensemble mean predictions are often better cal-
ibrated and have lower variances [13, 26, 46], but in this paper,
we focus on studying prediction variations among the individual
ensemble members. We observe that when we include more varia-
tion sources to the ensemble models, the ensemble members are
more diverse and different from each other. Moreover, the ensem-
ble’s prediction mean tends to be more accurate and the prediction
variations among the ensemble members are higher.

Finally, we demonstrate that neuron activation strength has
strong prediction power in estimating prediction variation of en-
semble models. With the activation strength information obtained
from a single DNN, we can add an auxiliary task to estimate pre-
diction variation directly. Our experiment results show that our
activation strength based method estimates prediction variation
fairly well as a regression task. The average 𝑅2 on MovieLens is

0.43 and 0.51 with different task definitions, and on Criteo is 0.78.
Our method is especially good at detecting the lowest and highest
variation bucket examples, on average with 0.92 AUC score for the
lowest bucket and 0.89 AUC score for the highest bucket on both
datasets. Our approach is complementary and orthogonal to many
other resource-saving or single model prediction variation estima-
tion techniques, as it doesn’t alter the target task’s optimization
objectives and process.
Applications — Prediction variation quantification is a fundamen-
tal problem and our activation strength based approach opens up
new opportunities for a lot of interesting applications. For example,
in model-based reinforcement learning, prediction variation has
to be quantified for exploration [7, 51]. In curriculum learning [1],
prediction variation can be used as a way for estimating example
difficulty. In medical domain, prediction variation can be used to
capture significant variability in patient-specific predictions [12].
Our proposed activation strength based method provides a simple
and principled way to serve prediction variation estimate by de-
ploying an auxiliary task, instead of using an expensive ensemble
model, during inference time.
Contributions — Our contributions are four fold:

• Framework for prediction variation estimation using activa-
tion strength in Section 3.

• Formal quantification on prediction variation for various
target tasks in Section 4.

• Prediction variation understanding by explicitly controlling
various randomness sources in Section 5.

• Empirical experiments to demonstrate strong predictive power
from neuron activation strength to estimate ensemble pre-
diction variation in Section 6.

We cover the related work in Section 2, and conclude with a
discussion of future work in Section 7.

2 RELATEDWORK
In machine learning literature, researchers mostly focus on two
types of uncertainty: aleatoric uncertainty and epistemic uncer-
tainty [10]. Aleatoric uncertainty is due to the stochastic variability
inherent in the data generating process [29]. Aleatoric uncertainty
corresponds to data uncertainty, which describes uncertainty for a
given outcome due to incomplete information [24]. Epistemic un-
certainty is due to our lack of knowledge about the data generating
mechanism [29], and corresponds to model uncertainty, which can
be viewed as uncertainty regarding the true function underlying
the observed process [4]. In this paper, we focus on studying model
uncertainty, especially prediction variations or disagreements.

There has been extensive research on methodologies for estimat-
ing model uncertainty and discussions on their comparisons [40].
Principled approaches include Bayesian approaches [20, 31, 33, 36]
and ensemble-based approaches [26]. Bayesian methods provide a
mathematically grounded framework tomodel uncertainty, through
learning the deep neural network as Gaussian processes [36], or
learning approximate posterior distributions for all or some weights
of the network [5, 25]. Ensemble methods [26], on the other hand,
is a conceptually simpler way to estimate model uncertainty. There
are multiple ways to create ensembles of neural networks: bag-
ging [6], Jackknife [34], random initialization, or random shuffling
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of training examples. The resulting ensemble of neural networks
contains some diversity, and the variation of their predictions can
be used as an estimate of model uncertainty. A lot of research work
results are based on the ensemble method [3, 7, 9, 28, 40]. For ex-
ample, [9] demonstrates promising results uses deep ensembles for
diagnosis and referral in retinal disease. [7] proposes a new algo-
rithm for model-based reinforcement learning by incorporating
uncertainty via ensemble. In this paper, we use ensemble as the
ground truth to produce prediction variations in different scenarios
(i.e., different randomness settings).

Estimating model uncertainty through Bayesian modeling or
ensemble usually incurs significant computation cost. For exam-
ple, Bayesian neural networks that perform variational learning
on the full network [5] significantly increase the training and serv-
ing cost. The cost for ensemble methods scales by the number of
models in the ensemble, which can be prohibitive for practical
use. To this end, researchers have proposed various techniques
to reduce the cost for Bayesian modelling and ensemble methods.
For example, single-model approaches are proposed to quantify
model uncertainty by modifying the output layer [30, 48], deriv-
ing tractable posteriors from last layer output only [42, 45], or
constructing pseudo-ensembles that can be solved and estimated
analytically [32]. Our proposed method in this paper can also be
viewed as a single-model approach for model uncertainty estima-
tion. However, we do not impose any Bayesian assumptions on the
network or any distributional assumptions on the ensembles. In-
stead, we build an empirical model to learn the association between
activation strength and model uncertainty, and use it to estimate
model uncertainty for new examples, which offers a relatively sim-
ple, robust and computationally efficient way to estimate prediction
variation from a single model.

3 VARIATION ESTIMATION FRAMEWORK
Similar to the work on model uncertainty estimation [38, 39, 47],
we build two components for the prediction variation estimation
framework: target task, and variation estimation task, as shown in
Figure 1. Before discussing the two tasks in detail, we first introduce
the two experiment datasets that we use throughout this paper.

3.1 Datasets
Our studies are based on two datasets: MovieLens and Criteo.
MovieLens — The MovieLens 1 contains 1M movie ratings from
6000 users on 4000 movies. This data also contains user related
features and movie related features.
Criteo — The Criteo Display Advertising challenge 2 is a binary
classification task to predict click-through rate (clicked event’s label
is 1, otherwise 0). The Criteo data consists of around 40M examples
with 13 numerical and 26 categorical features.

3.2 Target Task
The target task is defined by the original prediction problem, such
as the rating prediction task on MovieLens, and the click-through

1http://files.grouplens.org/datasets/movielens/ml-1m-README.txt
2https://www.kaggle.com/c/criteo-display-ad-challenge

Figure 1: Our framework for prediction variation estimation
using activation strength.

prediction task on Criteo. In this paper, we focus on the multi-
layer perceptron architecture (MLP), with ReLU as the activation
function. Furthermore, we define three target tasks as follows.
MovieLens Regression (MovieLens-R) — The target task takes
in user-related features (i.e., id, gender, age, and occupation) and
movie-related features (i.e., id, title and genres), and predicts movie
rating as a regression task. The movie ratings are integers from 1 to
5. We use mean squared error (MSE) as the loss function. MSE is a
standard metric for evaluating the performance of rating prediction
in recommenders [2, 19, 43]. For example, [2] used 100 million
anonymous movie ratings and reported their Root Mean Squared
Error (RMSE) performance on a test dataset as 0.95.

Each model trains for 20 epochs with early-stopping. Similar
to the neural collaborative filtering framework [17], we use fully
connected ReLU based MLP model for the rating prediction task.
We set the fully connected neuron layer sizes to be [50, 20, 10]
with batch size of 1024, using the Adam optimizer [23]. We set the
user id and item id embedding size to 8 [17]. All input features are
categorical in MovieLens3. The user age feature was divided into 7
categories, and thus we set the user age embedding size to 3. We
also set the user occupation embedding size to 5.
MovieLensClassification (MovieLens-C)—Similar to theMovie-
Lens regression task, we predict movie ratings as 5 integer values
from 1 to 5 and model this problem as a multi-class classification
task with softmax cross entropy as the loss function.

We experiment with temperature scaling values 𝑇 =[0.1, 0.2, 0.5,
1, 2, 5, 10] with batch size of 1024 to make sure predictions are well
calibrated [16]. We pick 𝑇 = 0.2 which gives the best Brier score4
while achieving similar accuracy compared to other settings.
Criteo — This target task uses a set of numerical and categorical
features to predict the click-through rate. The label for the task

3http://files.grouplens.org/datasets/movielens/ml-1m-README.txt
4https://en.wikipedia.org/wiki/Brier_score
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is either 0 or 1 representing whether an ad is clicked or not. We
model this problem as a binary classification task with sigmoid cross
entropy loss function. The trained model outputs a float between 0
and 1 representing the predicted click-through probability.

We use the same model setting as described in [40], except for
ReLU layer sizes. In the beginning, we set ReLU layer sizes to be
[2572, 1454, 1596] as in [40], but found that only around 80 neurons
are activated at least once on a 10k sample data. As a result, in this
paper, we use ReLU layer sizes of [50, 20, 10] with a batch size of
1024 and set the 𝑏𝑒𝑡𝑎_1 for the Adam optimizer [23] to be 0.97, and
we find the prediction performance is similar to the model with
much larger ReLU layer sizes. Each model is trained for 1 epoch.

3.3 Variation Estimation Task
The variation estimation task uses neuron activation strength to
estimate prediction variation for each input example. Neurons at
different layers could yield values of different scales. Thus, we de-
fine neruon activation strength as the normalized neuron output
to represent how strong a neuron output is. To be more specific,
given a target task model and for each neuron, we collect the neu-
ron raw output values for all the training examples to obtain the
distribution mean and standard deviation. Then we are able to con-
duct Z-score normalization on the neuron raw outputs to serve as
neuron activation strength.

As shown in Figure 1, we build a neural network model tak-
ing the neuron activation strength features to estimate prediction
variation. In our current setup, we collect activation strength fea-
tures from all the neurons in the target task. We concatenate all
the activation features and feed to a DNN for prediction variation
estimation. During training time, we use ensemble to estimate pre-
diction variation as the ground-truth label, which are used to train
the variation estimation task model. We formally define prediction
variation in Section 4. During the inference time, we directly out-
put the estimated prediction variation using activation strength as
an auxiliary task. We find that it is possible to identify important
neurons and reduce the number of features. Due to the space limit,
we will not discuss feature reduction in this paper. The detailed
setup of the variation estimation task is discussed in Section 6.

4 PREDICTION VARIATION
QUANTIFICATION

In this section, we formally quantify prediction variation in different
problem settings. Ensemble is one state-of-the-art benchmark for
prediction uncertainty estimation [6, 11, 26, 40]. We use ensemble to
estimate model prediction variation, that is howmuch disagreement
there is among ensemble model predictions.

Given the same training data and model configuration, we train
an ensemble of 𝑁 models𝑀 = {𝑚}, where𝑀 is the set of models,
and 𝑁 is the ensemble size. Let {𝑥} be the testing data, and 𝑥
represents the feature vector. Each of the trained model 𝑚 ∈ 𝑀

makes a prediction on an example 𝑥 ∈ {𝑥} as 𝑦′𝑚 (𝑥).
For regression and binary classification tasks, the model output

is a float value, thus we define prediction variation as value pre-
diction variation based on the standard deviation of the predicted
float values across different model members in the ensemble. For

multi-class classification tasks, the model output is a probability dis-
tribution over different categories. We define prediction variation
as distribution prediction variation based on the KL-disagreement or
generalized Jensen-Shannon divergence [26] on the predicted prob-
ability distributions. Now we define prediction variation formally.

Definition 4.1. (Value Prediction Variation) Given an example 𝑥
that represents the feature vector, we define its prediction variation
𝑃𝑉 (𝑥) to be the standard deviation of predictions from the set

of models 𝑀 as 𝑃𝑉 (𝑥) =

√∑
𝑚∈𝑀 (𝑦′𝑚 (𝑥)−𝑦 (𝑥))2

|𝑀 |−1 , where 𝑦 (𝑥) =

1
|𝑀 |

∑
𝑚∈𝑀 𝑦′𝑚 (𝑥)

Definition 4.2. (Distribution Prediction Variation [26]) Given
the example 𝑥 that represents the feature vector, let the predic-
tion distribution for the example 𝑥 be 𝑝 (𝑦 |𝑥). We define predic-
tion variation 𝑃𝑉 (𝑥) to be the sum of the Kullback-Leibler (KL)
divergence from the prediction distribution of each model𝑚 ∈ 𝑀
to the mean prediction distribution of the ensemble. 𝑃𝑉 (𝑥) =∑𝑀
𝑚=1 𝐾𝐿(𝑝𝑚 (𝑦 |𝑥) | |𝑝𝐸 (𝑦 |𝑥)) where 𝑝𝐸 (𝑦 |𝑥) = 𝑀−1 ∑

𝑚 𝑝 (𝑦 |𝑥) is
the mean prediction of the ensemble.

5 PREDICTION VARIATION SOURCES
In this section, we diagnose the prediction variation sources, and
we are interested in seeing their effects on the total prediction
variation by controlling each randomness source.

There are many sources contributing to prediction variation.
Random initialization of DNN parameters contributes randomness
to model predictions. Randomness can also come from training data
shuffling or sub-sampling. In addition, asynchronous or distributed
training could lead to training order randomness. More surprisingly,
we observe the hardware itself contributes to the model prediction
variation: we find that by fixing all the other settings, training a
model on different CPUs might produce different models.

In this paper, we consider three types of randomness sources:
1. Shuffle (S) — Whether randomly shuffles input data, i.e., ran-
domizes input data order.
2. RandInit (R)—Whether randomly initializes model parameters,
including DNN weights and embeddings. We can fix the initializa-
tion by setting a global random seed in Tensorflow.
3. Jackknife (J) — Whether randomly sampling input data by
applying Jackknife sub-sampling. Similar to delete-1 Jackknife [34],
we split data into N Jackknife sub-samples and each ensemble
member randomly leaves one Jackknife sample out. We use 100
models for each ensemble as discussed in Appendix A.1, andwe split
the data into 100 unique Jackknife sub-samples. Another popular
data sampling method is bootstrap [50]. For this work, we pick
Jackknife due to its simplicity to implement.

We set up the prediction variation randomness control experi-
ments as follows: First, if incorporating Jackknife randomness, we
obtain the Jackknife sub-samples; otherwise, we use all the train-
ing data. Second, if incorporating Shuffle randomness, we shuffle
the training data; otherwise we do not. Finally, if incorporating
RandInit randomness, we randomly initialize all the parameters
without a fixed global seed for all the ensemble members; otherwise
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Randomness MovieLens-R MovieLens-C Criteo
Settings MSE ACC PV Mean PV Std PV Coeff ACC PV Mean PV Std AUC PV Mean PV Std PV Coeff
(R0) None 0.7980 0.4483 0.0000 0.0000 0.00% 0.4635 0.0000 0.0000 0.7956 0.0000 0.0000 0.00%
(R1) R 0.7569 0.4570 0.1948 0.0692 5.83% 0.4818 4.4486 2.5744 0.7991 0.0300 0.0162 16.3%
(R2) S 0.7671 0.4473 0.1433 0.0509 4.36% 0.4746 2.7379 1.6717 0.7999 0.0359 0.0179 20.7%
(R3) R+S 0.7479 0.4521 0.1936 0.0649 5.87% 0.4829 4.4637 2.5053 0.7999 0.0358 0.0181 20.4%
(R4) J 0.7718 0.4464 0.1494 0.0638 4.54% 0.4745 2.7522 1.9771 0.8003 0.0394 0.0198 22.9%
(R5) R+J 0.7489 0.4522 0.2035 0.0701 6.14% 0.4829 4.7250 2.6514 0.8002 0.0396 0.0199 22.9%
(R6) S+J 0.7640 0.4486 0.1560 0.0571 4.74% 0.4766 3.1739 1.9803 0.8002 0.0409 0.0200 23.5%
(R7) R+S+J 0.7457 0.4528 0.2013 0.0667 6.08% 0.4838 4.7332 2.6723 0.8000 0.0407 0.0202 23.6%

Table 1: Ensemble’s prediction accuracy and prediction variation (PV) on 8 randomness settings. PV coefficient (coeff) shows
the average ratio of PV to the ensemble mean prediction over all the testing examples.

Figure 2: Pearson correlation of prediction variations for ensembles with different randomness settings.

we use a fixed global seed.5 We use an ensemble of 100 models for
each of the randomness settings: as discussed in Appendix A.1,
93% of prediction variation in the ensemble of 1000 models can be
captured with size 100 ensemble.

On each dataset of MovieLens and Criteo, we randomly split
the data into training and testing. On MovieLens we split the 1M
data into 60% for training, and 40% for testing. On Criteo, same
to [40], we use 37M data for training, 4.4M for validation, and 4.4M
for testing. We obtain the prediction variation estimation on all the
testing examples for further analysis.
Randomness Source Comparison— Table 1 shows the accuracy
and prediction variation statistics for different combinations of the
three randomness sources. For each type of randomness combina-
tion (e.g., (R3) R+S means using RandInit and Shuffle only), we train
100 models of the same setting, and obtain the ensemble mean pre-
diction for accuracy evaluation and report the prediction variations.
For accuracy evaluation, we report Mean Squared Error (MSE) and
accuracy (ACC) for MovieLens-R, ACC for MovieLens-C, and AUC
score for Criteo. We obtain ACC for MovieLens-R by rounding the
ratings to the closest integers. For prediction variation metrics, we
report prediction variation (PV) mean and standard deviation, and
PV coefficient (coeff). We obtain the PV coefficient for each example
𝑥 as PV(x) divided by the ensemble mean prediction.

From the tables, we can see that each type of the randomness
sources exhibits a non-negligible and different contribution towards
the total prediction variations. Ensemblemodels withmore different
randomness sources tend to produce more accurate aggregated
mean prediction with higher prediction variations. On all three

5When RandInit is enabled, we use a fixed set of 100 random seeds.

target tasks, the R7 setting appears to exhibit the best or close
to best accuracy score, and its prediction variations are also the
highest or close to the highest among all the randomness settings.
It also seems that different target tasks or datasets are sensitive to
different types of randomness sources. We observe that the Criteo
data is more sensitive to Shuffle and Jackknife randomness while
the MovieLens data is more sensitive to RandInit. We verify that by
fixing all the randomness sources, we do not observe any prediction
variation in the R0 settings. The PV Mean and PV std is always
0 for R0. According to PV coefficient, we notice that MovieLens
shows around 5-6% of prediction sway from the mean prediction
while Criteo has around 20% of prediction sway.
Randomness Source Correlations — Under each randomness
setting, we are able to obtain the prediction variation for each
example. Figure 2 shows the Pearson correlation of the prediction
variations of all the examples between each pair of the randomness
settings. The randomness setting can be found at Table 1. We do
not consider R0 because it eliminates all the randomness in the
model and PV is always 0.

As we can see from Figures 2, the prediction variation correlation
patterns on MovieLens is quite different from Criteo. For example,
while the lowest Pearson correlation score on MovieLens is around
0.7, all the randomness settings on Criteo are quite correlated with
the lowest Pearson correlation score to be around 0.92.
Regression vs Classification — On MovieLens, we are able to
predict ratings as regression or classification. Table 1 shows that
the prediction accuracy is higher whenwe predict ratings as a classi-
fication task than as a regression task almost for all the randomness
settings, as classification optimizes for the accuracy metric directly.
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Figure 3: Pearson correlation of prediction variations be-
tween MovieLens-R and MovieLens-C.

We also compare the prediction variations obtained through
regression and classification, and Figure 3 shows the Pearson cor-
relation of prediction variations for the two tasks on various ran-
domness settings for all the testing examples. We find that whether
the variations are strongly correlated depends on the randomness
settings. As shown in the figure, the prediction variations are highly
correlated (with Pearson correlation more than 0.8) when we add
the RandInit randomness source, otherwise the two tasks are less
correlated. we think the reason is that RandInit controls model
parameters and the loss function plays an important role, while
underlying data properties affect Shuffle and Jackknife more.

6 PREDICTION VARIATION ESTIMATION
In this section, we study the problem of using neuron activation
strength to infer prediction variation. We first discuss the prediction
variation estimation task setup in Section 6.1, and then show the
experiment results on using neuron activation strength to estimate
prediction variation in Section 6.2.

6.1 Variation Estimation Task Setup
As shown in Figure 1, the variation estimation task collects the neu-
ron activation information collected during the target task inference
time. We use the prediction variation estimated by the ensemble
model for training, and then during inference time, the variation
estimation model infers the prediction variation as an auxiliary
task. Now we set up the variation estimation task as follows.
Evaluation Procedure — On both MovieLens or Criteo, we first
split the data into training 𝐷𝑡 and testing 𝐷𝑒 for the target task.
On MovieLens, we split the 1M data into 60% for training and 40%
for testing; on Criteo, we use the same setting as in [40], 37M data
for training, 4.4M for validation and 4.4M for testing. The training
data 𝐷𝑡 is used to train the target task model𝑚𝑡 , and is also used
for calculating the neuron output distribution mean and standard
deviation for feature normalization.

Given the trained target task model𝑚𝑡 , we further split 𝐷𝑒 into
two sets: 50% as 𝐷𝑒1 = (𝑥𝑒1, 𝑃𝑉 (𝑥𝑒1)) for training the variation
estimation model; and another 50% as 𝐷𝑒2 = (𝑥𝑒2, 𝑃𝑉 (𝑥𝑒2)) for
testing. The ground-truth label of prediction variation for 𝐷𝑒1 is
collected in a separate process: We train 100 target task models
independently with the same configurations to𝑚𝑡 using training
data 𝐷𝑡 , and then we obtain the predictions for 𝐷𝑒1 from the 100

ensemble models to calculate the prediction variation for each each
𝑥 ∈ 𝐷𝑒1. In this paper, we used 100 models for more accurate
variation estimation. in practice, 5 to 10 model ensembles would
work fine as we discussed in Section A.1.

Given a trained target task model𝑚𝑡 , we build a neural network
model𝑚𝑣 to estimate prediction variations.𝑚𝑣 collects the activa-
tion strength information from𝑚𝑡 ’s neurons as features.𝑚𝑣 trains
on𝐷𝑒1 and tests on𝐷𝑒2 with fully connected layers of size [100, 50],
batch size 256, Adam optimizer with learning rate 0.001, and 150
training epochs with early stopping. We find that 𝑚𝑣 takes less
than one epoch to converge on Criteo, but takes longer to converge
on MovieLens due to its much smaller data size.

Now we explain𝑚𝑣 ’s input features and objective in detail.
Input Features—We consider two types of input features collected
from neuron activation strength. We use ReLU [35] as the activation
function. We believe our activation strength feature is general and
can be applied to other activation functions, such as Softplus [15],
ELU [8], GELUs [18], and Swish [41]. Due to space limitations, we
only experiment with ReLU.

Binary — On ReLU neurons, we consider whether a neuron
is activated as the input feature. This binary feature represents
whether the neuron output is greater than 0.

Value — The raw value of a neuron’s output directly represents
the strength of an activated neuron. Therefore, we experiment with
normalized activation value as the input feature. We normalize the
neuron outputs according to the neuron output mean and standard
deviation collected from the training data.
Objective —We estimate the prediction variation in two ways.

Regression — In this setting, the model directly estimates the
prediction variation as a regression task. We use Mean Squared
Error (MSE) as the loss function. However, by directly optimizing for
MSE, this regression task’s output range could be huge. As a result,
we limit the minimum output of the model to be 0 as prediction
variation is always positive, and limit the maximum output to be
𝑚𝑒𝑎𝑛+3∗𝑠𝑡𝑑 where the mean and std are estimated on the training
data’s prediction variations.𝑚𝑒𝑎𝑛 + 3 ∗ 𝑠𝑡𝑑 should be able to cover
99.7% of the data in a Guassian distribution.6

Classification — In this setting, we divide prediction variation
into multiple buckets according to the percentile, and then predict
which variation bucket it belongs to. We set the bucket number to
be 5, and use cross entropy as the loss function for the prediction
variation classification model.

6.2 Variation Estimation Performance
In this section, we show the variation estimation performance using
neuron activation strength on MovieLens and Criteo.
Regression Performance — When we run the prediction varia-
tion estimation as a regression task, we directly output a score as
the estimated prediction variation.

In Table 2, we show the Mean Squared Error (MSE) and 𝑅2 for
the three target tasks on the 7 randomness control settings. From
the table, on all the three target tasks and all the 7 randomness
control settings, we observe strong prediction power of neuron
activation strength for ensemble prediction variations. The average

6https://en.wikipedia.org/wiki/68-95-99.7_rule
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MovieLens-R MovieLens-C Criteo
MSE 𝑅2 MSE 𝑅2 MSE 𝑅2

(R1) R 0.0022 0.5416 3.6159 0.4586 0.0063 0.7617
(R2) S 0.0011 0.5636 1.5015 0.4683 0.0068 0.7863
(R3) R+S 0.0019 0.5514 3.4288 0.4569 0.0062 0.8100
(R4) J 0.0025 0.3885 2.5986 0.3386 0.0086 0.7817
(R5) R+J 0.0024 0.5219 3.7727 0.4646 0.0085 0.7868
(R6) S+J 0.0017 0.4938 2.3175 0.4125 0.0091 0.7739
(R7) R+S+J 0.0022 0.5123 4.0496 0.4368 0.0092 0.7761
Average 0.0020 0.5104 3.0407 0.4338 0.0078 0.7824

Table 2: Performance of variation estimation as regression
on 7 randomness settings.

𝑅2 on MovieLens-R is 0.51, on MovieLens-C is 0.43, and on Criteo is
0.78. The variation estimation performance is the best on the Criteo
data, while MovieLens-R is better than MovieLens-C. The reasons
could be: First, Criteo has more training data than MovieLens. To
train the variation estimation model, we have 2.2M (50% of 4.4M)
training data on Criteo, while only 0.2M (50% of 0.4M) training
data on MovieLens; Second, Criteo has a larger relative range of
prediction variations, compared to MovieLens. As shown in Table 1,
Criteo shows around 20% of prediction variation sway from the
mean prediction, which is much higher than 4-6% on MovieLens;
Finally, the Criteo task is probably the easiest task among the three:
it is a binary classification task, while MovieLens-R is a regression
task and MovieLens-C is a multi-class classification task.
Classification Performance — We also run the prediction varia-
tion estimation as a classification task, by predicting which vari-
ation bucket it should be in. We use both binary and value input
features. Due to the space limit, we only show the results on the R3
randomness setting, as R3 uses training data shuffling and random
initialization which is the most common setting in practice.

Figure 4 shows the AUC scores and Figure 5 shows the confusion
matrix for the 5-bucket prediction variation classification on both
MovieLens and Criteo. The numbers in Figure 5 are normalized by
the actual example number in each bucket. Bucket 1 represents the
lowest variation slice, while bucket 5 represents the highest.

As we can see from Figure 4, our variation estimation model is
fairly good at distinguishing examples at different variation buckets,
especially for the lowest and highest buckets. The average AUC
score for the three tasks on bucket 1 is about 0.92 and on bucket 5
is about 0.89. Figure 5 shows that the classification errors mostly
happen on adjacent buckets. For example, on Criteo, most of the
mis-classifications assign bucket 1 examples to bucket 2. When
we divide the prediction variation buckets on training data, we
notice that the bucket thresholds are close. For example, under the
randomness control setting R3, the thresholds of the 5 buckets for
MovieLens-R are [0.1420, 0.1672, 0.1950, 0.2366], and the thresholds
for Criteo is [0.0194, 0.0287, 0.0398, 0.0515]. As show in the figures,
Criteo seems to have the best performance among the three tasks.
Again the reasons could be that the Criteo task has more training
data, is probably the easiest among the three tasks, and it has much
larger relative prediction variation range.
Activation Feature Study— In Table 3, we show the contribution
of the two input activation strength features. We try two feature

Figure 4: AUC for variation bucket prediction with the ran-
domness setting R3.

MovieLens-R MovieLens-C Criteo
MSE 𝑅2 MSE 𝑅2 MSE 𝑅2

B 0.0025 0.4196 4.1616 0.3408 0.0124 0.6210
BV 0.0019 0.5514 3.4288 0.4569 0.0062 0.8100

Table 3: Activation feature study for variation estimation as
regression with the randomness setting R3.

settings: B refers to using the binary feature only; and BV refers
to using both the binary and value features. As shown in the table,
each type of features makes a non-negligible contribution towards
prediction variation estimation. Thus, it is beneficial to have both
the binary and value features for prediction variation estimation.
Reproducibility — When we evaluate the variation estimation
model, the performance is calculated based on one target taskmodel.
To check whether the performance is reproducible, we train 5 new
target task models. To simplify the problem, we also use the ran-
domness setting R3, which is the most commonly used setting in
practice. Table 4 shows the MSE and 𝑅2 for each run on both Movie-
Lens and Criteo. As shown in the table, the standard deviation
of MSE and 𝑅2 for the 5 runs is small for each of the three tasks.
Thus, we conclude that activation strength is useful for estimating
prediction variation and it is reproducible.
Comparison with Dropout [14] — Dropout is also a standard
way to estimate model uncertainty. We estimate prediction vari-
ation using dropout as follows: We train one model by randomly
dropping 20% of the neurons on the ReLU layers using the random-
ness settings R3. During inference time, we keep the dropout turned
on to obtain the predicted results for all the testing data. We run the
inference 100 times, and obtained the prediction variation for each
testing example. We find that the prediction variation estimated by
dropout is not very correlated with the variation estimated by the
ensemble method. On MovieLens-R, Pearson correlation of predic-
tion variations for dropout and ensemble is 0.25, RMSE is 0.0798,
and 𝑅2 is -0.5010. On Criteo, Pearson correlation of prediction vari-
ations for dropout and ensemble is 0.37, RMSE is 0.0279, and 𝑅2 is
-1.3709. As a result, we did not conduct further comparison with
our activation strength based method.
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Figure 5: Confusion matrix for variation estimation as classification for the randomness setting R3.

MovieLens-R MovieLens-C Criteo
Run MSE 𝑅2 MSE 𝑅2 MSE 𝑅2

1 0.0019 0.5514 3.4288 0.4569 0.0062 0.8100
2 0.0020 0.5160 3.3243 0.4734 0.0061 0.8140
3 0.0019 0.5418 3.1825 0.4959 0.0064 0.8036
4 0.0019 0.5384 3.2375 0.4872 0.0070 0.7863
5 0.0021 0.4994 3.2631 0.4831 0.0066 0.7969
Std 0.00008 0.0190 0.0842 0.0133 0.0003 0.0098

Table 4: Reproducibility test for variation estimation as re-
gression with the randomness setting R3.

7 CONCLUSION AND FUTUREWORK
In this paper, we conduct empirical studies to understand the predic-
tion variation estimated by ensembles under various randomness
control settings. Our experiments on two public datasets (Movie-
Lens and Criteo) demonstrate that with more variation sources,
ensemble tends to produce more accurate point estimates with
higher prediction variations. More importantly, we demonstrate
strong predictive power of neuron activation strength to infer en-
semble prediction variations, which provides an efficient way to
estimate prediction variation without the need to run inference
multiple times as in ensemble methods.

In the future, we are interested in exploring the proposed ac-
tivation strength based methods in various applications, such as
model-based reinforcement learning, and curriculum learning. In
addition, we plan to improve our activation strength based ap-
proach as follows. First, we aim to simplify the training procedure
of prediction variation estimation. Our current activation strength
based approach requires a tedious process to collect prediction vari-
ations from ensembles. We hope to make this step easier, or remove
the dependency of relying on the ensemble models. Second, we
aim to improve the variation estimation accuracy by considering
more neuron activation features such as neuron patterns, and to
improve the prediction variation generalizability by understanding
the contributions of neurons activation at different positions and
layers. Finally, we hope to demonstrate the prediction power of
our activation strength based approach on other neural network
architectures aside from the simple MLP framework.

A APPENDIX
A.1 Model Ensemble Sizes
In this section, we are interested in finding out how many models
in ensemble are need to estimate prediction variation accurately.
In this section, we conduct empirical experiments on MovieLens-R,
and Criteo to answer this question.

For each target task, using the same training data and model
configuration, we first train 1000 models as the ensemble universe
𝑀𝑔𝑡 to obtain ground-truth prediction variations, using the R3
randomness setting. Given an example 𝑥 , we obtain its prediction
variation from the 1000 ensemble models as 𝑃𝑉𝑔𝑡 (𝑥) . We calculate
the mean prediction variation for all the examples as ¯𝑃𝑉𝑔𝑡 .

Then we evaluate the prediction variation difference between
an ensemble𝑀𝑁 of a smaller size 𝑁 and𝑀𝑔𝑡 . We use delta ratio to
quantify the difference between the prediction variation estimated
from the two ensembles𝑀𝑁 and𝑀𝑔𝑡 as follows.

Definition A.1. (Delta Ratio) Let prediction variation delta𝛿𝑀𝑁
(𝑥)

be the absolute difference of the estimated prediction variation be-
tween a model ensemble𝑀𝑁 of size 𝑁 and the ground-truth model
ensemble 𝑀𝑔𝑡 , as 𝛿𝑀𝑁

(𝑥) = |𝑃𝑉𝑀𝑁
(𝑥) − 𝑃𝑉𝑔𝑡 (𝑥) |. We obtain the

average prediction variation delta for all the examples in a dataset
𝐷 as 𝛿𝑀𝑁

= 1
|𝐷 |

∑
𝑥 ∈𝐷 𝛿𝑀𝑁

(𝑥). We define delta ratio 𝑑𝑟𝑀𝑁
to

be the ratio of prediction variation delta 𝛿𝑀𝑁
to the average pre-

diction variation in the ground-truth ensemble models ¯𝑃𝑉𝑔𝑡 , as
𝑑𝑟𝑀𝑁

= 𝛿𝑀𝑁
/ ¯𝑃𝑉𝑔𝑡

In Figure 6, we show the delta ratio of different ensemble sizes
for the MovieLens regression task and the Criteo task. For each
ensemble size 𝑁 , we sample N models without replacement from
the 1000 ground-truth model universe and obtain its delta ratio. We
repeat this sampling process for 20 times, and obtain the mean and
standard deviation of the delta ratio for the given𝑁 . In the figure, we
can see the delta ratio decreases when the ensemble size increases.
The delta ratio statistics is similar on both datasets, MovieLens and
Criteo. When the ensemble size is 100, the delta ratio is about 7%
which indicates 93% of prediction variation from the ground-truth
ensemble of 1000 models is captured. As a result, in this paper, we
use 100 as the default ensemble size for all experiments.
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Figure 6: Delta ratio for different ensemble sizes on the
MovieLens regression task and the Criteo task.
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