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Abstract

Factor modeling is an essential tool for exploring intrinsic dependence structures among high-

dimensional random variables. Much progress has been made for estimating the covariance matrix 

from a high-dimensional factor model. However, the blessing of dimensionality has not yet been 

fully embraced in the literature: much of the available data are often ignored in constructing 

covariance matrix estimates. If our goal is to accurately estimate a covariance matrix of a set of 

targeted variables, shall we employ additional data, which are beyond the variables of interest, in 

the estimation? In this article, we provide sufficient conditions for an affirmative answer, and 

further quantify its gain in terms of Fisher information and convergence rate. In fact, even an 

oracle-like result (as if all the factors were known) can be achieved when a sufficiently large 

number of variables is used. The idea of using data as much as possible brings computational 

challenges. A divide-and-conquer algorithm is thus proposed to alleviate the computational 

burden, and also shown not to sacrifice any statistical accuracy in comparison with a pooled 

analysis. Simulation studies further confirm our advocacy for the use of full data, and demonstrate 

the effectiveness of the above algorithm. Our proposal is applied to a microarray data example that 

shows empirical benefits of using more data. Supplementary materials for this article are available 

online.

Keywords

Asymptotic normality; Auxiliary data; Divide-and-conquer; Factor model; Fisher information; 
High-dimensionality

1. Introduction

With the advance of modern information technology, it is now possible to track millions of 

variables or subjects simultaneously. To discover the relationship among them, the 

estimation of a high-dimensional covariance matrix Σ has recently received a great deal of 

attention in the literature. Researchers proposed various regularization methods to obtain 
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consistent estimators of Σ (Bickel and Levina 2008; Rothman et al. 2008; Lam and Fan 

2009; Cai, Zhang, and Zhou 2010; Cai and Liu 2011). A key assumption for these 

regularization methods is that Σ is sparse, that is, many elements of Σ are small or exactly 

zero.

Different from such a sparsity condition, factor analysis assumes that the intrinsic 

dependence is mainly driven by some common latent factors (Johnson and Wichern 1992). 

For example, in modeling stock returns, Fama and French (1993) proposed the well-known 

Fama–French three-factor model. In the factor model, Σ has spiked eigenvalues and dense 

entries. In the high-dimensional setting, there are many recent studies on the estimation of 

the covariance matrix based on the factor model (Fan, Fan, and Lv 2008; Fan, Liao, and 

Mincheva 2011, 2013; Bai and Li 2012; Bai and Liao 2013), where the number of variables 

can be much larger than the number of observations.

The interest of this article is on the estimation of the covariance matrix for a certain set of 

variables using auxiliary data information. In the literature, we use only the data information 

on the variables of interest. In the data-rich environment today, substantially more amount of 

data information is indeed available, but is often ignored in statistical analysis. For example, 

we might be interested in understanding the covariance matrix of 50 stocks in a portfolio, yet 

the available data information is a time series of thousands of stocks. Similarly, an 

oncologist may wish to study the dependence or network structures among 100 genes that 

are significantly associated with a certain cancer, yet she has expression data for over 20,000 

genes from the whole genome. Can we benefit from using much more rich auxiliary data?

The answer to the above question is affirmative when a factor model is imposed. Since the 

whole system is driven by a few common factors, these common factors can be inferred 

more accurately from a much larger set of data information (Fan, Liao, and Mincheva 2013), 

which is indeed a “blessing of dimensionality.” A major contribution of this article is to 

characterize how much the estimation of the covariance matrix of interest and also common 

factors can be improved by auxiliary data information (and under what conditions).

Consider the following factor model for all p observable data yt = (y1t, …, ypt)′ ∈ ℝp at 

time t:

yt = Bft + ut, t = 1, …, T , (1)

where ft ∈ ℝK is a K-dimensional vector of common factors, B = (b1′ , …, bp′ )′ ∈ ℝp × K is a 

factor loading matrix with bi ∈ ℝK being the factor loading of the ith variable on the latent 

factor ft, and ut is an idiosyncratic error vector. In the above model, yt is the only observable 

variable, while B is a matrix of unknown parameters, and (ft, ut) are latent random variables. 

Without loss of generality, we assume E(ft) = E(ut) = 0 and ft and ut are uncorrelated. Then, 

the model implied covariance structure is
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Σ = B cov (ft)B′ + Σu,

where Σ = E(ytyt′) and Σu = E(utut′). Observe that B and ft are not individually identifiable, 

since Bft = BHH′ft for any orthogonal matrix H. To this end, an identifiability condition is 

imposed:

cov (ft) = IK and B′Σu
−1Bis diagonal, (2)

which is a common assumption in the literature (Bai and Li 2012; Bai and Liao 2013).

Assume that we are only interested in a subset S among a total of p variables in model (1). 

We aim to obtain an efficient estimator of

ΣS = BSBS′ + Σu, S,

the covariance matrix of the s variables in S, where BS is the sub-matrix of B with row 

indices in S and Σu,S is the submatrix of Σu with row and column indices in S. As mentioned 

above, the existing literature uses the following conventional method:

• Method 1: Use solely the s variables in the set S to estimate common factors ft, 

the loading matrix BS, the idiosyncratic matrix Σu,S, and the covariance matrix 

ΣS.

This idea is apparently strongly influenced by the nonparametric estimation of the 

covariance matrix and ignores a large portion of the available data in the other p – s 
variables. An intuitively more efficient method is

• Method 2: Use all the p variables to obtain estimators of ft, the loading matrix B, 

the idiosyncratic matrix Σu, and the entire covariance matrix Σ, and then restrict 

them to the variables of interest. This is the same as estimating ft using all 

variables, and then estimating BS and Σu,S based on the model (1) and the subset 

S with ft being estimated (observed), and obtaining a plug-in estimator of ΣS.

We will show that Method 2 is more efficient than Method 1 in the estimation of ft and ΣS as 

more auxiliary data information is incorporated. By treating common factor as an unknown 

parameter, we calculate its Fisher information that grows with more data being used in 

Method 2. In this case, a more efficient factor estimate can be obtained, for example, 

through weighted principal component (WPC) method (Bai and Liao 2013). The advantage 

of factor estimation is further carried over to the estimation of ΣS by Method 2 in terms of its 

convergence rate. Moreover, if the number of total variables is sufficiently large, Method 2 is 

proven to perform as well as an “oracle method,” which observes all latent factors. This 

lends further support to our aforementioned claim of “blessing of dimensionality.” Such a 

best possible rate improvement is new to the existing literature, and counted as another 
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contribution of this article. All these conclusions hold when the number of factors K is 

assumed to be fixed and known, while s, p, and T all tend to infinity.

The idea of using data as much as possible brings computational challenges. Fortunately, we 

observe that all the p variables are controlled by the same group of latent factors. Having 

said that, we can actually split p variables into smaller groups, and then use each group to 

estimate latent factors. The final factor estimate is obtained by averaging over these 

repeatedly estimated factors. Obviously, this divide-and-conquer algorithm can be 

implemented in a parallel computing environment, and thus produces factor estimators in a 

much more efficient way. On the other hand, our theory illustrates that this new method 

performs as well as the “pooled analysis,” where we run the method over the whole dataset. 

Simulation studies further demonstrate the boosted computational speed and satisfactory 

statistical performance.

The rest of the article is organized as follows. We compare the Fisher information of the 

factors by the two methods in Section 2. Section 3 describes the WPC method. As a main 

result, the convergence rates of Different estimators of ΣS are further compared in Section 4 

under various norms. Section 5 introduces the divide-and-conquer method for accelerating 

computation, while Section 6 presents all simulation results. Section 7 gives a microarray 

data example to illustrate our proposal. All technical proofs are delegated to the Appendix.

For any vector a, let aS denote a sub-vector of a with indices in S. Denote ‖a‖ the Euclidean 

norm of a. For a symmetric matrix A ∈ ℝd×d, let AI,j be the submatrix of A with row and 

column indices in I and J, respectively. We write AS for AS,S for simplicity. Let λj(A) be the 

jth largest eigenvalue of A. Denote ‖A‖ = max{|λ1(A)|, |λd(A)|} the operator norm of A, 

‖A‖max = maxij |aij| the max-norm of A, where aij is the (i, j)th entry of A, 

‖A‖1 = maxi ∑ j = 1
d |ai j| the L1 norm of A, ‖A‖F = tr(A′A) the Frobenius norm of A, and 

‖A‖M = d−1/2‖M−1/2AM−1/2‖F the relative norm of A to M, where the weight matrix M is 

assumed to be positive definite. For a non-square matrix C, let CS be the submatrix of C 
with row indices in S.

2. Fisher Information of Common Factor

In this section, we treat the vector of common factors as a fixed unknown parameter, and 

compute its Fisher information matrices based on Method 1 and Method 2. In the 

computation, the loading matrix B is treated as deterministic in Proposition 2. In Proposition 

3, the Fisher information is computed for each given B and then averaged over B by 

regarding it as a realization of a chance process, which bypasses the block diagonal 

assumption needed without taking average over B. In other sections, we adopt the 

convention regarding the factors as random and B as fixed. We start by calculating the Fisher 

information of θt := Bft, which serves as an intermediate step in obtaining that for ft. For 

simplicity of notation, time t is suppressed in (yt, ft, ut, θt) so that it becomes (y, f, u, θ) in 

this section.

Given a general density function of y, denoted as h(y; θ), the Fisher information of θ 
contained in full data is given by
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I p(θ) = E ∂ log h(y; θ)
∂θ

∂ log h y; θ)
∂θ ′ .

When only data in S is used, the Fisher information of θS is given by

IS(θS) = E
∂ log hS(yS; θS)

∂θS

∂ log hS(yS; θS)
∂θS

′ .

where hS is the marginal density of yS for the target set of variable S. Our first proposition 

shows that {Ip(θ)}S, the submatrix of Ip(θ) restricted on S, dominates IS(θS) under a mild 

condition.

Proposition 1. If h(y; θ) = h(y – θ) and the density function h(y – θ) satisfies the following 

regularity condition:

∇yS∫ h(yS − θS, y
Sc − θ

Sc)dy
Sc = ∫ ∇yS

h(yS − θS, y
Sc − θ

Sc)dy
Sc, (3)

then{Ip(θ)}S ≥ IS(θS) in the sense that {Ip(θ)}S – IS(θS) is positive semidefinite.

The regularity condition (3) is fairly mild, as illustrated in the following examples.

Example 1. In model 1, if uS and uSc are independent, then (3) holds.

Example 2. If y follows an elliptical distribution that

h(y; θ) ∝ g((y − θ)′Σ−1(y − θ)),

where the mapping function g(t) : [0, ∞) → [0, ∞) satisfies that |g′(t)| ≤ cg(t) for some 

positive constant c, and E|y| < ∞, then (3) holds. Example 2 includes some commonly used 

multivariate distributions as its special cases, for example, the multivariate normal 

distribution and the multivariate t-distribution with degrees of freedom greater than 1. The 

proof is given in Appendix A.2.

We next compute the Fisher information of f based on the full dataset, denoted as I(f), and 

the partial dataset restricted on S, denoted as IS(f). This can be done easily by noting that I(f) 
= B′Ip(θ)B. Indeed, the WPC estimators used in Methods 1 and 2 achieve such efficiency 

since their asymptotic variances are proven to be the inverse of I(f) and IS(f), respectively; 

see Remark 1.

Proposition 2 shows that I(f) dominates IS(f), if Ip(θ) is block-diagonal, that is, {Ip(θ)}S,Sc = 

0. Hence, common factors can be estimated more efficiently using additional data ySc. The 

above block-diagonal condition implies that the idiosyncratic error of additional variables 
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cannot be confounded with that of the variables-of-interest. For example, if u is normal, then 

{Ip(θ)}S,Sc = 0 indeed requires that uS is independent of uSc.

Proposition 2. Under condition (3), if {Ip(θ)}S,Sc = 0, I(f) ≥ IS(f).

So far we treat B as being deterministic. Rather, Proposition 3 regards {bi} as a realization 

of a chance process. Under this assumption, the expectation of I(f) over B is shown to 

always dominate that of IS(f). In other words, we can claim that averaging over loading 

matrices, a larger dataset contains more information about the unknown factors.

Proposition 3. If {Bi}i = 1
p  are iid random loadings with E(bi) = 0 and (3) holds, then E[I(f)] ≥ 

E[IS(f)], where the expectation is taken with respect to the distribution of B.

3. Efficient Estimation of Common Factor

In this section, we construct an efficient estimator of the common factors by showing that its 

asymptotic variance is exactly the inverse of its Fisher information. This together with the 

arguments in Section 2 enables us to draw a conclusion that using more data results in a 

more efficient factor estimator with a smaller asymptotic variance.

From a least-square perspective, when the loading matrix B is known, ft can be estimated by 

the weighted least-squares: argmin
ft ∈ ℝK ∑t = 1

T (yt − Bft)′Σu
−1(yt − Bft). In the high-

dimensional setting (p ≫ T), we assume Σu is a sparse matrix and define its sparsity 

measurement as

mp = max
i ≤ p ∑

j ≠ i
I(σu, i j ≠ 0), whereσu, i jis the(i, j)th entry ofΣu . (4)

In particular, we assume the following sparsity condition:

mp = o min 1
p1/4

T
log p , p1/4 and ∑

i = 1

p
∑
j ≠ i

I(σu, i j ≠ 0) = O(p) . (5)

Now, we propose to solve the following constrained weighted least-square problem:

(B, f1, …, fT) = argmin
B, ft

∑
t = 1

T
(yt − Bft)′Σ

∼
u
−1(yt − Bft),

subject to 1
T ∑

t = 1

T
ftft′ = IK; B′Σ∼u

−1Bis diagonal,
(6)
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where Σ̃u is a regularized estimator of Σu to be discussed later. The above constraint is a 

sample analog of the identifiability condition (2). The involvement of the weight Σ∼u
−1 is to 

account for the heterogeneity among the data and leads to more efficient estimation of (B, ft) 

(Choi 2012; Bai and Liao 2013).

Indeed, an initial estimator Σ̃u of the idiosyncratic matrix Σu is needed for solving the 

constrained weighted least-square problem. We propose to obtain such an estimator by the 

following procedure, which is in the same spirit as the estimation of the idiosyncratic matrix 

in the POET method (Fan, Liao, and Mincheva 2013). Let Sy = T−1∑t = 1
T (yt − y)(yt − y)′ be 

the sample covariance of y and {(λi, ζi)}i = 1
p  be eigen-pairs of Sy with λ1 ≥ λ2 ≥ … ≥ λp. 

Denote R = Sy − ∑i = 1
K λiζiζi′. We estimate Σu by Σ̃u, whose (i, j)th entry

σu, i j =
ri j, fori = j,

si j(ri j), fori ≠ j, whereR = (ri j),

sij(rij) is a general entry-wise thresholding function (Antoniadis and Fan 2001) such that 

sij(z) = 0 if |z| ≤ τij and |sij(z) – z| ≤ τij for |z| > τij. In our article, we choose hard-

thresholding even though SCAD (Fan and Li 2001) and MCP (Zhang 2010) are also 

applicable. We specify the entry-wise thresholding level as

τi j(p) = C riir j jω(p), where ω(p) = log p
T + 1

p
, (7)

and C is a constant chosen by cross-validation. The thresholding parameter Cω(p) is applied 

to the correlation matrix. This is similar to the adaptive thresholding estimator for a general 

covariance matrix (Rothman, Levina, and Zhu 2009), where the entry-wise thresholding 

level depends on p.

With Σ̃u being the thresholding estimator described above, the constrained weighted least-

square problem (6) can be solved by the weighted principal component (WPC) method. The 

solution is given by

F = (f1, …, fT)′ and B′ = T−1YF, (8)

where Y = (y1, …, yT) and the columns of F̂ are the eigenvectors corresponding to the 

largest K eigenvalues of the T × T matrix TY′Σ∼u
−1y (Bai and Liao 2013).
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In the following, we give a result showing that the WPC estimator is asymptotically 

efficient. Indeed, Bai and Liao (2013) derive the asymptotic normality of f̂t under the 

following conditions:

i. All eigenvalues of B′B/p are bounded away from zero and infinity as p → ∞;

ii. There exists a K × K diagonal matrix Q such that B′Σu
−1B/ p Q. In addition, the 

diagonal elements of Q are distinct and bounded away from infinity.

iii. For each fixed t ≤ T, (B′Σu
−1B)−1/2B′Σu

−1ut
d

N(0, IK), as p → ∞, together with 

the sparsity assumption (5), and some additional regularity conditions given in 

Section A.1. When √plog p = o(T), it is shown that

p(f t − Hft)
D N(0, Q−1), (9)

where H is a specific rotation matrix given by

H = V−1F′FB′Σ∼u
−1B/T , (10)

and V̂ is a K × K diagonal matrix of the largest K eigenvalues of Y′Σ∼u
−1y/T. The 

rotation matrix H is introduced here so that Hft is an identifiable quantity from 

the data. See more discussion about the identifiability in Remark 2.

Condition (i) is a “pervasive condition” requiring that the common factors affect a 

nonnegligible fraction of subjects. This is a common assumption for the principal 

components based methods (Fan, Liao, and Mincheva 2011; Bai and Liao 2013). In 

condition (ii), B′Σu
−1B is indeed the Fisher information (under Gaussian errors) contained in 

p variables, while the limit Q can be viewed as an average information for each variable. 

Hence, the asymptotic normality in (9) shows that f̂t is efficient as its asymptotic variance 

attains the inverse of the (averaged) Fisher information.

Remark 1. The results in Section 2 together with (9) imply that Method 2 is in general better 

than Method 1 in the estimation of common factors. To explain why, we consider two 

Different cases here. When p is an order of magnitude larger than s, where s is the number of 

variables of interest. Method 2 produces a better estimator of factors with a faster 

convergence rate. Even when p and s diverge at the same speed, the factor estimator based 

on Method 2 is shown to possess a smaller asymptotic variance, as long as Σu,S,Sc = 0. 

Recall that B′Σu
−1B = I(f) and BS′ Σu, S

−1 BS = IS(f) under Gaussian errors, and they also 

correspond to the inverse of the asymptotic variance given by Methods 1 and 2, respectively. 

Then, Proposition 2 implies that Method 2 has a smaller asymptotic variance, if Σu,S,Sc = 0. 

Alternatively, if B is treated as being random, Proposition 3 immediately implies that 
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E(BS′ Σu, S
−1 BS) ≥ E(B′Σ−1B). Therefore, even without the block diagonal assumption, Method 

2 produces a more efficient factor estimate on average.

4. Covariance Matrix Estimation

One primary goal in this article is to obtain an accurate estimator of the covariance matrix 

ΣS = E(ySyS′ ) for the variables-of-interest. In this section, we compare three Different 

estimation methods, namely, Methods 1, 2, and Oracle Method, in terms of their rates of 

convergence (under various norms). Obviously, these rates depend on how accurately the 

realized factors are estimated as demonstrated later.

Below we describe these three methods in full details.

• Method 1:

i. Use solely the data in the subset S to obtain estimators of the realized 

factors F̂(1) and the loading matrix B̂
1 = T−1YSF̂(1) based on (8);

ii. Let (f t
(1))′ be the tth row of F̂(1), (bi

(1))′ be the ith row of B̂
1, 

uit = yit − (bi
(1))′f t

(1), and σi j = 1
T ∑t = 1

T uitu jt. The (i, j)th entry of the 

idiosyncratic matrix estimator Σu, S
(1)  of Σu,S is given by thresholding σ̂

ij 

at the level of Cθ i j
1/2ω(s), where ω(s) is defined in (7) and 

θ i j = 1
T ∑t = 1

T (uitu jt − σi j)
2;

iii. The final estimator is given by ΣS
(1) = B1B1′ + Σu, S

(1) .

• Method 2:

i. Use all p variables to obtain the estimate F̂(2) as given in (8) for the 

realized factors and then estimate the loading BS by B̂
2 = T−1YSF̂(2);

ii. Follow the same procedure as in Method 1 to obtain the estimator Σu, S
(2)

but based on F̂(2) and B̂
2;

iii. The final estimator is given by ΣS
(2) = B2B2′ + Σu, S

(2) .

• Oracle Method:

i. Estimate the loading by B̂
o = T−1YSF, where F = (f1, …, fT)′ are the 

true factors.

ii. The idiosyncratic matrix estimator Σu, S
o  is given by the same procedure 

as in Method 1, with bi
(1) and f t

(1) being replaced by bi
o and ft, 

respectively.

iii. The final estimator is given by ΣS
o = BoBo′ + Σu, S

o .
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Theorem 1 depicts the estimation accuracy of ΣS by the above three methods with respect to 

the following measurements:

‖ΣS − ΣS‖ΣS
, ‖ΣS − ΣS‖max, ΣS

−1 − ΣS
−1 ,

where ‖ΣS − ΣS‖ΣS
= p−1/2‖ΣS

−1/2ΣSΣS
−1/2 − IS‖

F
 is a norm of the relative errors. Note that 

the results of Fan, Liao, and Mincheva (2013) cannot be directly used here since we employ 

the weighted principal component analysis to estimate the unobserved factors. This is 

expected to be more accurate than the ordinary principal component analysis, as shown in 

Bai and Liao (2013). Indeed, the technical proofs for our results are technically more 

involved than those by Fan, Liao, and Mincheva (2013).

We assume that s is much less than p, that is, s = o(p), but both tend to infinity. Under the 

pervasive condition (i), ‖ΣS‖ ≥ cs and therefore diverges. For this reason, we consider the 

relative norm ‖Σ̂S – ΣS‖Σs, instead of ‖Σ̂S – ΣS‖, and the operator norm ‖ΣS
−1 − ΣS

−1‖ for 

estimating the inverse. In addition, we consider another element-wise max norm ‖Σ̂S – 

ΣS‖max. We show that if p is large with respect to s and T, Method 2 performs as well as the 

Oracle Method, both of which outperform Method 1. As a consequence, even if we are only 

interested in the covariance matrix of a small subset of variables, we should use all the data 

to estimate the common factors, which ultimately improves the estimation of ΣS. In 

particular, we are able to specify an explicit regime of (s, p) under which the improvements 

are substantial. However, when s ≍ p, that is, they are in the same order, using more data 

does not show as dramatic improvements for estimating ΣS. This is expected and will be 

clearly seen in the simulation section.

Before stating Theorem 1, we need a few preliminary results: Lemmas 1–3. Specifically, 

Lemma 1 presents the uniform convergence rates of the factor estimates by Methods 1 and 2. 

Based on that, Lemmas 2 and 3 further derive the estimation accuracy of factor loadings and 

idiosyncratic matrix by the three methods, respectively. These results together lead to the 

estimation error rates of ΣS in Theorem 1 w.r.t. three measures defined above. Additional 

Lemmas supporting the proof are given in the Appendix. Again, these kinds of results 

cannot be obtained directly from Fan, Liao, and Mincheva (2013) due to our use of WPC.

Lemma 1. Suppose that conditions (i), (ii), the sparsity condition (5), and additional 

regularity conditions (iv)–(vii) in Section A.1 hold for both s and p. If √plog p = o(T) and T 
= o(s2), then we have

max
t ≤ T

f t
(1) − H1ft‖ = OP

1
T

+ T1/4
s

and

max
t ≤ T

f t
(2) − H2ft = OP

1
T

+ T1/4
p

,
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where H1 = V1
−1F(1)′FBS′ Σ∼u, S

−1 BS/T , H2 = V2
−1F(2)′FB′Σ∼u, S

−1 B/T, V̂
1 is the diagonal matrix of 

the largest K eigenvalues of YS′ Σ∼u, S
−1 YS/T and V̂

2 is the diagonal matrix of the largest K 

eigenvalues of Y′Σ∼u
−1y/T.

Remark 2. H1 and H2 correspond to the rotation matrix H defined in (10) using Methods 1 

and 2, respectively. Recall that F = (f1, …, fT)′, then Hft = T−1V−1F(Bf1, …, BfT)′Σ∼u
−1Bft. 

Note that Hft only depends on quantities V−1F̂, Σ∼u
−1 and the identifiable component 

{Bft}t = 1
T . Therefore, there is no identifiability issue regarding Hft. In other words, even 

though ft itself may not be identifiable, an identifiable rotation of ft can be consistently 

estimated by f̂t.

Lemma 1 implies that Method 2 produces a better factor estimate if

0.5 < γs < 1.5 ≤ γp < 2,

by representing s and p as s ≍ Tγs and p ≍ Tγp.

It is not surprising that the estimation accuracy of loading matrix also varies among these 

three methods as shown in Lemma 2.

Lemma 2. Under conditions of Lemma 1,

max
i ≤ s

‖bi
(1) − H1bi‖ = OP(w1),

where w1: = 1
s

+ log s
T , max

i ≤ s
‖bi

(2) − H2bi‖ = OP(w2),

where w2: = 1
p

+ log s
T , max

i ≤ s
‖bi

(2) − bi‖ = OP(wo),

where wo: = log s
T .

Similarly, Lemma 2 indicates that Method 2 performs as well as the Oracle Method, both of 

which are better than Method 1, that is, w2 = wo < w1, if

0.5 < γs < 1 ≤ γp < 2,

by representing s and p in the order of T as above. We remark that the extra terms 1/√s and 1/

√p in w1 and w2 (in comparison with the oracle rate wo) are due to the factor estimation. 

Another preliminary result regarding the estimation of the identifiable component bi′ft is 

given in Lemma A.1.

Similar insights can be delivered from Lemma 3 on the estimation of Σu,S.
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Lemma 3. Under conditions of Lemma 1, it holds that

Σu, S
(1) − Σu, S = OP(msw1) = Σu, S

(1) −1 − Σu, S
−1 ,

Σu, S
(2) − Σu, S = OP(msw2) = Σu, S

(2) −1 − Σu, S
−1 ,

Σu, S
o − Σu, S = OP(mswo) = Σu, S

o −1 − Σu, S
−1 ,

where ms is defined as in (4) with p being replaced by s.

Now, we are ready to state our main result on the estimation of ΣS based on the above 

preliminary results. From Theorem 1, it is easily seen that the comparison of the estimation 

accuracy of ΣS among three methods is solely determined by the relative magnitude of wo, 

w1, and w2. Therefore, we should use additional variables to estimate the factors if p is much 

larger than s in the sense that T/log s = O(p) and s log s = o(T) (implying w2 = wo < w1).

Theorem 1. Under conditions of Lemma 1, it holds that

1. For the relative norm, ‖ΣS
(1) − ΣS‖ΣS

= OP( sw1
2 + msw1), 

‖ΣS
(2) − ΣS‖ΣS

= OP( sw2
2 + msw2), and ‖ΣS

o − ΣS‖ΣS
= OP( sw0

2 + mswo).

2. For the max-norm, ‖ΣS
(1) − ΣS‖max = OP(w1), ‖ΣS

(2) − ΣS‖max = OP(w2), and 

‖ΣS
o − ΣS‖max = OP(wo).

3. For the operator norm of the inverse matrix, ‖(ΣS
(1))

−1
− ΣS

−1‖ = OP(msw1), 

‖(ΣS
(2))

−1
− ΣS

−1‖ = OP(msw2) and ‖(ΣS
o)

−1
− ΣS

−1‖ = OP(mswo).

Remark 3. So far, we assumed that the number of factors K is fixed and known. A data-

driven choice of K has been extensively studied in the econometrics literature, for example, 

by Bai and Ng (2002), Kapetanios (2010). To estimate K, we can adopt the method by Bai 

and Ng (2002) and propose a consistent estimator of K (by allowing p, T → ∞) as follows:

K = argmin
0 ≤ k ≤ N

log 1
pT ‖Y − T−1YFkFk′ ‖

F
2 + kg(p, T),

where N is a predefined upper bound, F̂
k is a T × k matrix whose columns are √T times the 

eigenvectors corresponding to the largest k eigenvalues of Y′Y, and g(p, T) is a penalty 

function. Two examples suggested by Bai and Ng (2002) are
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g(T , p) = p + T
pT log pT

p + T or

g(T , p) = p + T
pT log ( min {p, T}) .

Under our assumptions (i)–(x), all conditions required by theorem 2 of Bai and Ng (2002) 

hold. Hence, their theorem implies that P(K̂ = K) → 1. Then, conditioning on the event that 

{K̂ = K}, our Theorem 1 still holds by replacing K with K̂. Other effective methods for 

selecting the number of factors include the eigen ratio method by Lam and Yao (2012) and 

Ahn and Horenstein (2013).

Remark 4. When K grows with p and T, Fan, Liao, and Mincheva (2013) gave the explicit 

dependence of the convergence rates on K for their proposed POET estimator. By adopting 

their technique, we can obtain the following results:

1. ‖ΣS
(1) − ΣS‖ΣS

= OP(K sw1
2 + K3msw1), ‖ΣS

(2) − ΣS‖ΣS
= OP(K sw2

2 + K3msw2), 

‖ΣS
o − ΣS‖ΣS

= OP(K swo
2 + K3mswo);

2. ‖ΣS
(1) − ΣS‖max = OP(K3w1), ‖ΣS

(2) − ΣS‖max = OP(K3w2), 

‖ΣS
o − ΣS‖max = OP(K3wo);

3. ‖(ΣS
(1))

−1
− ΣS

−1‖ = OP(K3msw1), ‖(ΣS
(2))

−1
− ΣS

−1‖ = OP(K3msw2), 

‖(ΣS
o)

−1
− ΣS

−1‖ = OP(K3mswo).

Again, the rate difference among three types of estimators only depends on wo, 

w1, and w2. Therefore, the same conclusion (when p is much larger than s, using 

additional variables improves the estimation of ΣS) can still be made even if K 
diverges. As long as K diverges in the rate that 

K = o( min {1/( sw1
2), 1/(msw1)1/3}), K = o(1/w1

1/3) or K = o(1/(msw1)1/3), the 

same blessing of dimensionality phenomena persist in terms of estimation 

consistency in relative norm, max norm, or operator norm of the inverse, 

respectively.

5. Divide-and-Conquer Computing Method

As discussed previously, we prefer using auxiliary data information as much as possible 

even we are only interested in the covariance matrix of some particular set of variables. But 

this can bring up heavy computational burden. This concern motivates a simple divide-and-

conquer scheme that splits all p variables in Y. Without loss of generality, assume that p 
rows of matrix Y can be evenly divided into M groups with p/M variables in each group. 

The s variables of interest can possibly be assigned to Different groups.

Divide-and-Conquer Computation Scheme
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1. In the mth group, obtain the initial estimator Σ̃u,m by using the adaptive 

thresholding method as described in Section 3 based on the data in the mth group 

only.

2. Denote Ym as the data vector corresponding to the variables in the mth group and 

let F̂
m = (f̂m,1, …, f̂m,T)′, where its columns are the eigenvectors corresponding 

to the largest K eigenvalues of the T × T matrix TYm′ Σ∼u, m
−1 Ym. The computation 

in the above two steps can be done in a parallel manner.

3. Average {f m, t}m = 1
M  to obtain a single estimator of ft as

ft = 1
M ∑

m = 1

M
f m, t .

The loading matrix estimate is given by B̄
S = T−1YSF̄, where F̄ = (f̄1, …, f̄T)′.

4. The idiosyncratic matrix is estimated as follows. Let ft′ be the tth row of F̄ and bi′

be the ith row of B̄
S. Let uit = yit − bi′ft, σi j = T−1∑t = 1

T uitu jt, and 

θ i j = T−1∑t = 1
T (uitu jt − σi j)

2. The (i, j)th entry of Σu,S is given by thresholding 

σ̂
ij at the level of Cθ i j

1/2ω(s), where ω(s) is defined as in (7) with p replaced by s.

5. The final estimator of the covariance matrix is given by

ΣS = BSBS′ + Σu, S .

We show that, if M is fixed,

‖ΣS − ΣS‖ΣS
= OP( sw2

2 + msw2),

‖ΣS − ΣS‖max = OP(w2),

‖(ΣS)−1 − ΣS
−1‖ = OP(msw2) .

These rates match the rates of ΣS
(2) attained by Method 2, where all p variables are pooled 

together for the analysis. The proof is given in Appendix A.3. The simulation results in 

Section 6 further demonstrate that without sacrificing the estimation accuracy, the divide-

and-conquer method runs much faster than Method 2. Therefore, the divide-and-conquer 

method is practically useful when dealing with massive dataset.

The main computational cost of our method comes from taking the inverse of Σ̃u. For our 

Method 2, where all p variables are pooled together for the analysis, the computational 

complexity of the inversion is O(p3). On the other hand, for the divide-and-conquer method, 
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the corresponding estimator Σ̃u,m in the mth group only needs a computational cost of 

O((p/M)3) to be inverted. Then, the total computation complexity is O(p3/M2). Hence, the 

computational speed can be boosted by M2-fold. Such a computational acceleration can also 

be observed from simulation study results in Figure 1(d). Other operations like the eigen-

decomposition on the T × T matrix TY′Σ∼u
−1Y do not have dominating computational cost, 

as we assume that p is much larger than T. When M grows too fast, the divide-and-conquer 

method may lose estimation efficiency compared with the pooled analysis (Method 2). 

However, considering its boost of computation, the divide-and-conquer method is practically 

useful when dealing with massive dataset.

6. Simulations

We use simulated examples to compare the statistical performances of Methods 1, 2, and the 

Oracle Method. We fix the number of factors K = 3 and repeat 100 simulations for each 

combination of (s, p, T). The loading bi, the factor ft and the idiosyncratic error ut are 

generated as follows:

• bi}i = 1
p  are iid from NK(0, 5IK).

• {ft}t = 1
T  are iid from NK(0, IK).

• {ut}t = 1
T  are iid from Np(0, 50Ip).

The observations {yt}t = 1
T  are generated from (1) using bi, ft, and ut from the above. Tables 

1–4 report the estimation errors of the factors, the loading matrices, and the covariance-of-

interest ΣS in terms of Different measurements.

We see from Tables 1 and 2 that when s = 50 and p = 1000, 2000, Method 1 performs much 

worse than Method 2, for both T = 200 and T = 400. However, when s increases to 800 with 

p being the same, Tables 3 and 4 show that the improvement of Method 2 over Method 1 is 

less profound. This is expected as the set of interest already contains sufficiently rich 

information to produce an accurate estimator for realized factors. In general, we note that 

Method 2 is the most advantageous in the settings where s is much smaller than p. In 

addition, from Tables 3 and 4, we can tell that Method 2 comes closer to the Oracle method 

as p grows. In practice, we also observe that the WPC factor estimator performs better than 

the unweighted PC estimator when ut is heteroscedastic. Due to the space limit, we choose 

not to present the simulation results in this model.

For further comparison with the divide-and-conquer method, we vary T from 50 to 500 and 

set (s, p, M) as s = ⎿T0.6⏌, p = ⎿T1.4⏌, and M = ⎿T0.2⏌. Figure 1 shows the estimation 

errors of the four methods together with the corresponding computational time. Again, when 

p is large, Method 2 performs as well as the Oracle Method, both of which greatly 

outperform Method 1. However, its computation becomes much slower in this case. In 

contrast, the divide-and-conquer method is much faster, while maintaining comparable 
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performance as Method 2. In the extreme case that p is around 6000 (T = 500), the divide-

and-conquer method can boost the speed by nine-fold for Method 2.

7. Real Data Example

We use a real data example to illustrate how Different utilization of available variables can 

affect the inference of the variables of interest. Krug et al. (2012) carried out a gene profiling 

study among 40 Portuguese and Spanish adults to identify key genetic risk factors for 

ischemic stroke. Among them, 20 subjects were patients having ischemic stroke and the 

others were controls. Their gene profiles were obtained using the GeneChip Human Genome 

U133 Plus 2.0 microarray. The data were available at Gene Expression Omnibus with access 

name “GSE22255.”

To judge how effectively the gene expression can distinguish ischemic stroke and controls, 

we applied the Linear Discriminant Analysis (LDA) to this dataset. We randomly chose 10 

subjects as the test set and the rest as the training set. We repeated the random splitting for 

100 runs. In each run, we selected the set of expressed Differentially (DE) genes with a 

threshold of over 1.2-fold change and a Q-value ≤ 0.05, which is a commonly used quantity 

to define DE genes (Storey 2002). An LDA rule was then learned from the training set using 

the selected genes and further applied to the test set for classifying cases and controls. The 

LDA rule classifies a subject as a case if

δ ′Σ−1(x − μ) ≥ 0, (11)

where δ̂ = μ̂
1 – μ̂

0 ∈ ℝs is the sample mean difference between the two groups (case–

control), s is the number of selected genes, Σ̂ ∈ ℝs×s is an estimator of the true covariance 

matrix Σ of the selected genes, and μ̄ = (μ̂
1 + μ̂

0)/2. μ̄, δ̂, and Σ̂ are obtainesd from the 

training set and x is the gene expression of subjects in the test set.

As s can be larger than the sample size, the traditional LDA where Σ̂ is the sample 

covariance is no longer applicable. An alternative method to estimate Σ is adopting the factor 

model. Factor modeling is widely used in the genomics literature to model the dependencies 

among genes (Kustra, Shioda, and Zhu 2006; Carvalho et al. 2012). Several factors, like the 

natural pathway structure (Ogata et al. 2000) can be the latent factors affecting the 

correlation among genes. A few spiked eigenvalues of the sample covariance in Figure 2 

also suggest the existence of potential latent factors in this dataset. Again, there are two 

ways using the factor model. One way is to use Method 1, where all procedures are done 

based on the selected genes only. The resulting rule is referred as “LDA-1” in Figure 3. 

Another way is to use auxiliary data as in Method 2. More specifically, it first uses data from 

all involved genes and subjects in the training set to estimate the latent factors. These 

estimated factors are then applied to the set of selected genes, where their loadings and 

idiosyncratic matrix estimators are obtained. Combing them together produces the 

covariance matrix estimator, which is still an s × s matrix. The resulting rule is referred as 
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“LDA-2” in Figure 3. Recall that the only difference between the two rules is that they use 

Different covariance estimators.

Figure 3 plots the average misclassification rates on the test set against the number of factors 

for the 100 random splits. It is clearly seen that LDA-2 gives better misclassification rates 

than LDA-1, which is solely due to a Different estimation of the covariance matrix. The 

results lend further support to our claim that using more data is beneficial.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Estimation error by four methods and their computational time: the dotted lines represent the 

means over 100 simulations and the segments represent the corresponding standard 

deviations.
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Figure 2. 
Eigen-values of the sample covariance matrix for GSE22255.
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Figure 3. 
Misclassification rates of LDA-1 and LDA-2 over 100 random splits: the dotted lines 

represent the means over 100 splits and the segments represent the corresponding standard 

deviations.
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