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ABSTRACT
Multi-task learning aims to solve multiple machine learning tasks
at the same time, with good solutions being both generalizable
and Pareto optimal. A multi-task deep learning model consists of a
shared representation learned to capture task commonalities, and
task-specific sub-networks capturing the specificities of each task.
In this work, we offer insights on the under-explored trade-off be-
tween minimizing task training conflicts in multi-task learning and
improving multi-task generalization, i.e. the generalization capabil-
ity of the shared presentation across all tasks. The trade-off can be
viewed as the tension between multi-objective optimization and
shared representation learning: As a multi-objective optimization
problem, sufficient parameterization is needed for mitigating task
conflicts in a constrained solution space; However, from a represen-
tation learning perspective, over-parameterizing the task-specific
sub-networks may give the model too many "degrees of freedom"
and impedes the generalizability of the shared representation.

Specifically, we first present insights on understanding the pa-
rameterization effect of multi-task deep learning models and empir-
ically show that larger models are not necessarily better in terms
of multi-task generalization. A delicate balance between mitigating
task training conflicts vs. improving generalizability of the shared
presentation learning is needed to achieve optimal performance
across multiple tasks. Motivated by our findings, we then propose
the use of a under-parameterized self-auxiliary head alongside each
task-specific sub-network during training, which automatically
balances the aforementioned trade-off. As the auxiliary heads are
small in size and are discarded during inference time, the proposed
method incurs minimal training cost and no additional serving cost.
We conduct experiments with the proposed self-auxiliaries on two
public datasets and live experiments on one of the largest industrial
recommendation platforms serving billions of users. The results
demonstrate the effectiveness of the proposed method in improv-
ing the predictive performance across multiple tasks in multi-task
models.
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1 INTRODUCTION
In many machine learning applications, there is more than one
task that is of interest. For example, an object detection algorithm
may involve predicting both the class of and position of an object
[20]; a content recommendation system may optimize for short-
term conversion rates as well as long-term satisfaction of its users
[55]. These use cases require the prediction of multiple objectives
given a common set of features, a problem multi-task learning
is well suited to solve [7]. Over the past years, multi-task deep
learning has gained popularity through its success in awide range of
applications, including natural language processing [11], computer
vision [20, 41], and online recommender systems [4, 33, 34].

A multi-task learning problem usually entails learning from a
parameterized model class that shares a subset of parameters across
different tasks [42]. The benefits of such a shared architecture are
numerous. First, it exploits task relatedness with inductive bias
learning [6, 7]. Assuming that tasks share a common hypothesis
class, learning a shared representation across tasks is beneficial
especially for harder tasks or tasks with limited training examples
[31, 35]. Second, by forcing tasks to share model capacity, it intro-
duces a regularization effect. Third, it offers a highly compact and
efficient form of modeling which better enables training and serving
multiple prediction quantities for large-scale online systems.

At the same time, multi-task learning brings new challenges as
it often suffers from task training conflicts. With a single model op-
timizing multiple objectives that come from potentially conflicting
tasks, it is unlikely that all objectives would achieve optimality at
the same time [34, 45]. In other words, multi-task learning comes
with inherent trade-offs in the performance across different tasks.
Given a fixed model capacity, task conflicts can be quantified by
computing the per-task training loss in a multi-task learning para-
digm and comparing these losses with their respective single-task
counterparts. The larger the difference in loss between multi-task
and single-task models, the more task conflicts there are [49]. In
the rest of the paper, we interchangeably use the terms “task train-
ing conflicts” and “task conflicts”. Recent research has focused on
models and algorithms designed to reduce task training conflicts
and improve multi-task performance [32, 46, 47]. Other work has
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focused on designing flexible model architecture [42] and efficient
optimization algorithms [9, 45].

Large models have attracted a lot of popularity in the past years
with its success in numerous applications [15, 48]. Are larger mod-
els, especially larger task-specific sub-networks, always better in
multi-task learning scenarios? We start with understanding this
parameterization effect and point out the largely ignored trade-off
between minimizing task training conflicts and improving multi-
task generalization. Specifically, larger task-specific sub-networks
are not always better. On one hand, similar to [49], we empirically
show that by increasing parameterization, multiple training objec-
tives can have less conflicts, which coincides with multi-objective
learning theories [43] that sufficient parameterization is needed
for properly handling task conflicts in a constrained solution space.
However, on the other hand, we find that over-parameterizing task-
specific networks can yield solutions which are worse than those
derived from smaller models. This is because over-parameterization
diminishes the benefit of inductive transfer from multi-task deep
learning and can lead to poor per-task performance. In other words,
while larger task-specific networks have more flexibility in mitigat-
ing task conflicts, they also detract from good multi-task generaliza-
tion. Note that themulti-task generalizationwe discuss here is differ-
ent from the traditional notion of generalization: It is specifically in
the context of multi-task learning and refers to the generalizability
of the learned representation across multiple tasks.

Motivated by the findings, we then propose a simple yet effective
approach to automatically balance the trade-off between minimiz-
ing task training conflicts and improving multi-task generalization.
It can be viewed as an effort to improve the generalizability of
the shared representation learning (referred to as multi-task gen-
eralization in the rest of the work). Specifically, we propose to use
under-parameterized self-auxiliaries, which are small-capacity sub-
networks, alongside the large task-specific sub-networks during
training. They are effectively copies of the main task-specific sub-
networks and learn the same tasks, but with much lower capacity.
They are discarded during inference. So the proposed method only
incurs minimal additional training cost and no additional serving
cost. We find these under-parameterized self-auxiliaries introduces
an implicit regularization effect that improves the generalizability
of the shared representation learning. Empirical results validate
our proposed approach on benchmark datasets and an industrial
recommendation platform.

To summarize, our contributions are
• Understanding:We provide insights on the under-explored
trade-off in multi-task learning, which is the tension be-
tween minimizing task training conflicts and improving
multi-task generalization. Specifically, over-parameterizing
task-specific sub-networks may impedes the generalizability
of shared representation learning.

• Improvements:We propose the use of under-parameterized
self-auxiliaries to automatically balance the trade-off via im-
plicitly regularizing the shared representation learning.

• Validation:Through experiments on two benchmark datasets
and an industrial recommendation platform, we validate the
efficacy of the proposed approach in improving multi-task
generalization and therefore the performance across all tasks.

2 RELATEDWORK
Multi-task learning asmulti-objective optimization.Minimiz-
ing task losses in multi-task learning can be formulated as a multi-
objective optimization problem [45], in which the notion of Pareto
optimality was first proposed and studied [43]. In addition to a lin-
ear weighting of task losses which is commonly used for multi-task
learning problems, examples of other multi-objective optimization
methods include constraint methods, goal programming [24], expo-
nential weighted sum [3, 51], population methods [44], preference
elicitation [12], and many more [26, 37]. There is also research
on multi-objective optimization methods where the objectives are
nonconvex [39] or the Pareto frontier is nonconvex [19].

Despite the close relationship between multi-task learning and
multi-objective optimization, they also have significant differences.
For example, multi-objective optimization barely looks into non-
convex optimization of deep neural networks [53], which is a main
challenge for multi-task learning problems [9]. An example of the
recent works [28, 45] toward bridging this gap is the application of
the multiple-gradient descent algorithm [14] to multi-task learning,
which is a gradient-based multi-objective optimization method.

Inspired by these explorations, our work starts by empirically
investigating the Pareto frontiers of multi-task learning problems.
We find that trade-off is a function of parameterization as it lead
to different training and generalization difficulties. This is rarely
discussed in multi-objective optimization literature. Based on our
understanding, we then propose a simple yet effective treatment to
automatically balance the task conflict mitigation and the general-
ization benefits from learning multiple tasks jointly.
Improving Pareto efficiency formulti-task deep learning.Re-
cent research on reducing task training conflicts and improving
per-task performance for multi-task deep learning can be grouped
into three lines of efforts. The first line aims to develop flexible
parameter sharing in model architectures. Examples include soft
parameter-sharing that encourage more sharing for similar tasks
and less for conflicting tasks [22, 34, 38], adaptively deciding which
layers to share during the training process [32, 47], or on a macro
level, deciding which tasks should be learned together [46]. The
second line of research focuses on improving optimization algo-
rithms to better traverse the loss surface. These works mainly focus
on adaptive linear weighting approaches [9, 16, 25, 52] that find
better solutions than a naive linear weighting method. The third
line of research adds auxiliary tasks to enhance the performance
of one or more primary tasks. It has been widely adapted to com-
puter vision [54], natural language processing [2] and information
retrieval [29]. If related tasks are unavailable, auxiliary tasks can
also be constructed using adversarial loss [18], predicting inputs
or past labels [7, 8], pseudo-task augmentation [36] or learning
representations [40].

Our proposed under-parameterized self-auxiliaries can be viewed
as a special case of auxiliary task learning. However, unlike its
typical formulation, our method does not require specific domain
knowledge on designing auxiliary tasks. In particular, the auxiliary
tasks in our case are self-auxiliaries. They operate on the same
tasks but with different parameterizations. A similar concept mani-
fests in knowledge distillation [1, 23], but our method differs from
distillation in multi-task learning [30]. Instead of using a smaller
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(student) network to learn the predictions of the larger (teacher) net-
work, under-parameterized self-auxiliaries learn concurrently with
their primary (and larger) counterparts, collaboratively building a
generalizable feature representation within the shared layers.

3 UNDERSTANDING
Suppose there are T tasks sharing an input space X. Each task has
its own task space {Yt }

T
i=1 . A dataset of n i.i.d. examples from

the input and task spaces is given by {(xi ,y
1
i , ...,y

T
i )}

n
i=1, where y

t
i

is the label of the t-th task for example i . We assume a multi-task
model parameterized by θ ∈ Θ. θ = (θsh ,θ1, ...,θT ) includes shared-
parameters θsh and task-specific parameters θ1, ...,θT . Let ft (·, ·) :
X × Θ → Yt be the model function and Lt (·, ·) : Yt × Yt → R+

be the loss function for the t-th task. This formulation also includes
the more general multi-task learning setting where different tasks
have different inputs, in which case xi = (x1i , ...,x

T
i )

T where xti is
the input of the t-th task for example i .

Let L̂t (θ ) B
1
n
∑n
i=1 Lt (ft (xi ;θsh ,θt ),yti ) be the empirical loss

for the t-th task, where we drop the dependency on x andy for ease
of notation. The optimization for multi-task learning can then be
formulated as a joint optimization of a vector-valued loss function:

min
θ

(L̂1(θ ), ..., L̂T (θ ))
⊤. (1)

It is unlikely that a single θ optimizes all objectives simultane-
ously. The solution to (1) is therefore a set of points which represent
different trade-off preferences. Formally, solution θa is said to dom-
inate solution θb if L̂t (θa ) ≤ L̂t (θb ),∀t and there exists at least
one task j such that the inequality is strict. A solution θ is called
Pareto optimal if there is no solution θ ′ , θ such that θ ′ dominates
θ . Pareto frontier is the set of all Pareto optimal solutions.

For linear weighting method, the minimization objective is a
scalarization of the empirical loss vector L̂(θ ) B

∑T
t=1wt L̂t (θ ),

where {wt }t ∈{1, ...,T } are weights for individual tasks. Note that, al-
though being a popular choice for most existing multi-task learning
algorithms, linear weighting methods can only identify solutions
of (1) that are in the convex region of the Pareto frontier.
Benefits from large task-specific sub-networks. In this section,
we present two major reasons for using large multi-task deep learn-
ing models, namely: providing justification for the use of linear
weighting method; and effectiveness in the mitigation of task train-
ing conflicts.

Linear weighting method is known to only be able to obtain
solutions that lie on the convex regions of the Pareto frontier [26].
Therefore, we first look into the convexity of the Pareto frontier
for multi-task models. Notably, when all objectives are convex in
their respective parameters, the Pareto frontier is guaranteed to be
convex.

Proposition 1. Suppose Lt (θ ) is convex and continuous in θ for
all tasks t ∈ {1, ...,T } and Θ is convex. Then the Pareto frontier of
(L̂1(θ ), ..., L̂T (θ ))

⊤ in problem (1) is convex.

When some or all objectives are nonconvex, we find that over-
parameterized multi-task deep learning models imply convex or
nearly-convex Pareto frontiers. Details for the discussion as well as
the proof for Proposition 1 can be found in Appendix A.1, which

provides justification for using linear weighting methods for over-
parameterized multi-task learning models.

Another benefit from large multi-task models, and in particular
large task-specific sub-networks, is their flexibility in dealing with
task conflicts. As a multi-objective optimization problem, conflicts
are reflected as the competition among tasks over limited model
capacity. Large models therefore enable better handling of task
conflicts, as it offers larger solution spaces.
Challenges inherent in large task-specific sub-networks. To
understand if larger task-specific networks lead to better multi-task
performance, we perform a series of studies on synthetic datasets.
Similar to the setup in Finn et al. [17] andMa et al. [34], we generate
a multi-task dataset and define each task as a regression from the
input to the output of a combination of sinewaves. To introduce task
conflicts together with task relatedness, we let the two tasks share
a small subset of frequencies and a shared-bottom architecture
[42] with task-specific sub-networks is used. A full description
of the synthetic dataset and model architectures is available in
Appendix A.2. Figure 1a shows that, as the number of hidden layers
increases from 0 to 5, the Pareto frontier on test data also improves;
Surprisingly, however, as more hidden layers are added (from 5 to
9), the Pareto frontier rapidly deteriorates. We also observe similar
trends when increasing the number of shared layers, the number
of both shared layers and task-specific layers, or varying layer
capacity rather than depth.

(a) Baseline.

(b) 1-3 hidden layers. (c) 5-7 hidden layers.

Figure 1: Pareto frontiers on synthetic data. (a): Baseline Pareto
frontiers with increasing model capacity. The best single task per-
formance across all models is also reported. (b)-(c): Comparison of
our method with baselines on different model capacities.

This intriguing observation touches upon the largely ignored
trade-off between minimizing task training conflicts and improv-
ing multi-task generalization. Multi-objective optimization theory
suggests that sufficient model capacity is needed to be able to deal
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with task conflicts. However, treating multi-task learning as a multi-
objective optimization problem is limiting. Multi-task learning is a
more general problem as it leverages parameter sharing and induc-
tive transfer [6] which benefit the generalizability of the learned
shared representations. Over-parameterization inevitably under-
mines the benefit of sharing, which may hurt multi-task generaliza-
tion and ultimately backfire.

4 METHOD
To summarize our insights, formulti-task learning, solutions learned
by small task-specific sub-networks generalize well to multiple
tasks but suffer from task training conflicts. Large task-specific sub-
networks are able to better mitigate those training conflicts, but
suffer from loss of multi-task generalization. These observations
motivate our design of an automatic treatment towards achieving
the best of both worlds.

We propose to use under-parameterized self-auxiliaries to auto-
matically balance task conflict mitigation and generalization for
multi-task deep learningmodels. By adding an under-parameterized
small tower for each task in a large multi-task model, we hope to en-
joy the benefits of both large and small task-specific sub-networks.

We present the proposed approach under the popular multi-task
architecture, which consists of a representation shared by all tasks
with task-specific layers built on top of the shared representation.
The model familyHt for each task t is represented as:

ft (x ;θsh ,θt ) = ft (h(x ;θsh );θt ),∀t , (2)
where h(·; ·) : X × Θ → RM is the shared representation.

Now we construct a self-auxiliary tower for every task with the
same task labels but a different parameterization with significantly
less capacity (Figure 2):

f at (x ;θsh ,θat ) = ft (h(x ;θsh );θat ),∀t , (3)
where the superscript stands for auxiliary and θat is much smaller
in size than the original task-specific sub-network θt . The empirical
loss is defined as

L̂(θ ) =
T∑
t=1

wt (L̂t (θsh ,θt ) + γ L̂t (θsh ,θ
a
t )) (4)

wherewt is the weight for task t , and

L̂t (θsh ,θ
a
t ) =

1
n

n∑
i=1

Lt (ft (xi ;θsh ,θat ),yti ) (5)

is the loss for task t ’s self-auxiliary, and γ > 0 controls the weight
of the auxiliary loss. At inference time, the self-auxiliaries are dis-
carded and only ft (·;θsh ,θt ) is used as task t ’s prediction. Because
the self-auxiliaries are small in size and only used in training, they
incur minimal additional training cost and no extra cost at serving
time.

On the synthetic datasets in Section 3, under-parameterized
self-auxiliaries significantly improve the Pareto frontier on the
test dataset for all levels of parameterization (Figure 1b and 1c).
Moreover, the improvement is greater for larger task sub-networks,
which aligns with our insights that small auxiliary heads improve
the generalization of larger models.
Why do small heads help? The fact that under-parameterized
self-auxiliaries improve multi-task generalization is not surprising

Figure 2: An illustration of under-parameterized self-auxiliaries
for multi-task learning.

to us. In large models, what can be shared may also be captured
well in the large task-specific towers with equal or even smaller
training losses; as a consequence, multi-task generalization and the
benefits of sharing are likely sacrificed.

However, adding small towers to large multi-task models shifts
the paradigm. By simultaneously training the same task with two
towers – once with the full parameterization and the other with the
under-parameterization – the shared representation of the multi-
task model h(·;θsh ) is "forced" toward learning a representation
which suits both fully parameterized and under-parameterized task-
specific transformations.

In other words, when a multi-task model has sufficient capacity,
it has the “freedom” to allocate the information to either the shared
representation h(·;θsh ) or task-specific towers ft (·;θt ). The way it
allocates the information trades off the model’s ability to mitigate
task conflicts with the multi-task generalization benefits derived
from sharing representations. The proposed under-parameterized
self-auxiliaries act as implicit regularization in that sharing happens
in the shared layers as much as possible. And the original task
towers effectively havemore capacity to learn the task specifics and
mitigate conflicts better.

We point out that self-auxiliaries share similar form as pseudo-
task augmentation (PTA) by Meyerson and Miikkulainen [36], in
which models are trained with multiple towers for each task, and is
shown to benefit both single-task and multi-task settings. PTA and
other task augmentation methods are theoretically supported by
Baxter [5] which shows that additional tasks can lead to implicit
data augmentation and better generalization. Our proposed use of
under-parameterized self-auxiliaries, however, relies more on the
implicit regularization brought by the small towers which leads to
a better learning dynamics of the shared representations. Unlike
PTA which trains multiple towers and significantly increases pa-
rameterization, under-parameterized self-auxiliaries incurs very
little additional parameterization while efficiently balancing the
mitigation of task conflicts with generalization improvements. In
the ablation studies in Section 5.3, we confirm the need of under-
parameterization for self-auxiliaries to improve multi-task general-
ization.

Using under-parameterized self-auxiliaries is simple: any tower
f at (x ;θsh ,θat ) that is significantly smaller than the original tower

3012



Can Small Heads Help? Understanding and Improving Multi-Task Generalization WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

ft (x ;θsh ,θt ) would work. In this sense our approach is nearly
model-agnostic as it is general, adaptive, and can be applied to
any model architecture. For example, one can simply use a single
fully-connected layer over the shared representation h(x ;θsh ) as
the self-auxiliary tower (Figure 3a). If the dimension of the shared
layer outputM is big, we can further reduce the parameterization
through pooling (Figure 3b). For multi-class classification tasks, the
final layer is a softmax layer with the size equal to the number
of classes C . In this case, a single fully-connected layer as self-
auxiliaries introduce CM additional parameters, which could be a
considerable amount if bothC andM are large as inmanymulti-task
applications. We can instead let the self-auxiliaries be a two-layer
tower with a bottleneck layer of size b ≪ M,C (Figure 3c), in this
case the number of additional parameters will be O(max(C,M))

instead of O(CM).

(a) Single fully-connected layer. (b) Pooling.

(c) Bottleneck layer.

Figure 3: Example architectures for under-parameterized self-
auxiliaries. (a): Single fully-connected layer. (b): Single layer with
average pooling. (c): Two-layer tower with bottleneck layer.

It is worth noting that the proposedmethod of under-parameterized
self-auxiliaries for multi-task learning can be combined with prior
multi-task learning augmentations such as uncertainty weighting
[25], gradient surgery [52] and multi-objective optimization algo-
rithms [28, 45].

5 EXPERIMENTS
We start with describing the setup of the experiments including
datasets, architectures and tuning etc. Then we present the results
in multi-task scenarios which cover regression and classification
tasks in computer vision and recommender systems, including live
experiments on an industrial content recommendation platform. In
the end we present ablation studies to test the need of "small heads"
as self-auxiliaries and provide more insights into the improved
multi-task generalization as a result. The link to code is provided
in Appendix A.4.

5.1 Experiment Setup
5.1.1 Datasets, architecture and tuning. We introduce the datasets
and the model architecture used for each application below. More
details can be found in Appendix.
MultiMNIST and MultiFashionMNIST: The MultiMNIST and
MultiFashionMNIST datasets are created by extending the MNIST
[27] and FashionMNIST [50] to a multi-task setup [28, 45]. Two
32 × 32 images are chosen at random from MNIST/FashionMNIST.
Then one is put at the top-left corner and the other is at bottom-
right, overlapping each other with a vertical and horizontal stride
of 4 pixels. The multi-task learning problem is to classify the digit
on the top-left (task 1) and bottom-right (task 2) for each combined
image.We adopt the LeNet architecture [27] as themulti-taskmodel.
We consider three different model sizes, with an increasing number
of shared hidden layers and task-specific hidden layers (Figure 11 in
Appendix). The architecture for the self-auxiliary head is as in Fig.
3a. Details on the architecture and hyperparameters can be found
in Appendix A.3. Training and test data are randomly split at 80/20.
For each method and every model size, we perform 1000 runs for
hyperparameters tuning. With the selected hyperparameters, we
then perform another 1000 runs with task weightswt varying from
0 to 1, evaluate each of them on the test dataset, plot the Pareto
frontier (i.e. the Pareto optimal solutions from the 1000 runs).
MovieLens: The MovieLens 1M dataset1 [21] records 1 million
ratings from 6000 users on 4000 movies. To formulate a multi-
task learning problem, we first augment the dataset by randomly
sampling movies for every user that do not have ratings in the
original dataset, and label those examples as un-watched movies
for that user. For every user, the number of un-watched movies
is the same as the number of her watched movies, with leaves us
with 2 million examples. We then sample 1.6 million examples from
the augmented dataset as training data, and another 0.2 million
examples as test data. For every user and movie pair, we construct
a binary classification task to predict whether the user watches the
movie (task 1), and a regression task to predict the user’s rating
(1-5) on the movie as a float value (task 2). The design of the tasks
as well as the model architecture is similar to what is described in
a real-world large-scale recommendation system [13]. Each layer is
of size 200 with ReLU activation. Adagrad optimizer with batch size
of 100 is used. We also experiment with average pooling (Figure 3b)
on the last shared hidden layer as the input for the self-auxiliary
towers. The performance of the tasks is measured by computing
the error rate for watch prediction and mean squared error (MSE)
for rating prediction on the test dataset. For each baseline method,
we perform 1000 runs to search for the best learning rate; for our
method of self-auxiliaries, we perform 1000 runs to search for the
best combination of learning rate, self-auxiliary weight γ , and self-
auxiliary pool length (Figure 3b). We fix the number of tuning
runs for each method to make sure that we are not over-tuning for
our method which has more hyperparameters. We then perform
another 1000 runs with the task loss weights varying between 0
and 1, evaluate each of them on the test dataset, and plot the Pareto
frontier of the test metrics.

1https://grouplens.org/datasets/movielens/1m/
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An industrial content recommendation platform: We conduct
live experiments on one of the largest industrial content recommen-
dation platforms serving billions of users. For every user who is
currently consuming contents on the platform, a recommendation
of a list of contents to be consumed next is shown to her. The rec-
ommendations are generated from a pool of hundreds of millions of
contents on the platform, based on the user’s past interaction with
the platform as well as content features and contextual features.
The modeling framework for the content recommendation system
is similar to the existing two-stage architecture [13], where a candi-
date generation network is followed by a ranking network. There
are 8 tasks in total: 4 tasks predicting user satisfaction-related scores
on the platform, which are denoted as S1, S2, S3, S4; and another 4
tasks predicting user short-term and long-term engagement-related
behaviors, which are denoted as E1,E2,E3,E4.

We experiment with the ranking network which is a mixture-of-
experts model [34]. The architecture for the self-auxiliary head is
as shown in Fig. 3a. The model is trained continuously with 10% of
next day’s data as test data. For binary classification tasks, AUC on
test data is used as the evaluation metric; for regression tasks, root
mean squared error (RMSE) is used.

5.1.2 Baseline methods. We compare our method with state-of-
the-art model-agnostic methods for multi-task learning. The meth-
ods in experiment are: (1) self-auxiliaries: our method of under-
parameterized self-auxiliaries; (1) single task baseline (ST): learn-
ing each task separately; (2) linearweighting (MTL): linearweight-
ing method L̂(θ ) =

∑T
t=1wt L̂t (θ ) with the weights varying in the

simplex {w = (w1, ...wT )|
∑T
t=1wt = 1,wt ≥ 0,∀t}; (3) uncer-

tainty weighting (Uncertainty): learned uncertainty of the tasks
are used as loss weights [25]; (4) multiple-gradient descent al-
gorithm (MGDA-UB): a modified multiple-gradient descent algo-
rithm frommulti-objective optimization [45]; (5) gradient surgery
(PCGrad): a gradient projection method for mitigating task con-
flicts [52]; (6) pseudo-task augmentation (PTA-F): multiple task-
specific sub-networks are trained for the same task [36], and we
adopt the variant in which all but one of the sub-networks receive
gradient update during training (‘-F’), which is reported to have
best performance on multi-task learning.

5.2 Results
5.2.1 MultiMNIST and MultiFashionMNIST.. Figure 4. The results
show that our method achieves similar performance compared
with the best baseline method for small models (Figures 4a, 4b), and
better than other baselines for medium (Figures 4c, 4d) and large
models (Figures 4e, 4f).We note that PTA performs noticeably worse
than all baselines on small and medium models and lags behind self-
auxiliaries on large models (Figure 6b), therefore we don’t report the
results here. As a side note, uncertainty reweighting (‘Uncertainty’)
is the strongest baseline which consistently outperforms other
baselines in our experiments. Table 4 in Appendix A.3 summarizes
numerical comparisons.

We also observe that the larger the model, the greater the im-
provement our method exhibits over the baselines. As larger models
introduce more generalization challenges as discussed in Section 3,
these results further suggest the effectiveness of self-auxiliaries in

(a) M-MNist small model. (b)M-Fashion small model.

(c) M-MNIST medium model. (d)M-Fashion medium model.

(e) M-MNIST large model. (f) M-Fashion large model.

Figure 4: Experiment results on MultiMNIST (M-MNIST) and Mul-
tiFashionMNIST (M-Fashion) datasets with different model capaci-
ties.

achieving a better trade-off between task conflict mitigation and
multi-task generalization.

5.2.2 MovieLens. Figure 5a shows the Pareto frontier for the two
tasks, indicating that our method with average pooing significantly
improves the performance on both tasks. To understand the effec-
tiveness of average pooling, Figure 5b shows the performance of
our methods with different input dimensions for the self-auxiliary
heads. Numerical results are summarized in Table 1 by reporting
the middle points on the Pareto frontier. We find that by reducing
the parameterization of self-auxiliary towers with average pooling,
we can further improve its performance.

Watch Error Rating MSE
MTL 0.172 0.387

Uncertainty 0.165 0.399
MGDA-UB 0.168 0.385
PCGrad 0.167 0.397

Self-Auxiliaries 0.168 0.385
Self-Auxiliaries-pooling 0.161 0.377

Table 1: Numerical results on MovieLens dataset.
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(a) Self-auxiliaries vs. baselines. (b) Effect of average pooling.

Figure 5: Experiment results on MovieLens dataset.

5.2.3 An industrial content recommendation platform. In the ex-
periments, we compare both self-auxiliaries and PTA-F against the
current production setting (control) where each task is trained with
a single tower. For self-auxiliaries, we adopt the simple architecture
as in Figure 3a and with a neuron dropout rate of 0.2; For PTA-F,
we apply two additional towers of the same size as the original
task-specific towers.

Offline evaluation results. In Table 2, we report the relative changes
of the offline evaluation metrics for all eight tasks at 1 million
steps. For AUC metrics, positive changes means better classifica-
tion accuracy; for RMSE metrics, negative changes means smaller
regression error. We see that both PTA-F and our method of under-
parameterized self-auxiliaries perform better than the current pro-
duction model (control) across all tasks. However, our method of
self-auxiliaries is able to outperform PTA-F on 4 tasks while PTA-F
only out-performs self-auxiliaries on 1 task (Table 2a). We also com-
pute an averageAUC across all classification tasks S1, S2, S3, S4,E1,E2
and average RMSE across both regression tasks E3,E4. Table 2b
shows that our method achieves better overall performance on both
classification and regression tasks.

Live experiment results. We conduct a series of A/B experiments
in the live system serving billions of users to measure the benefits
of our approach. A small percentage of user traffic is split into three
groups, where the current production model (control), PTA-F and
our method serve as the deep ranking model respectively. Exper-
iments are run for three weeks, during which we aggregate user
satisfactionmetrics and engagementmetrics.We track page-specific
metrics measured on the page which shows the recommendations,
and also site-wide metrics for understanding overall user enjoy-
ment.

Table 3 summarizes the live experiment results. We see while
both PTA-F and our method of self-auxiliaries improve page-specific
satisfaction and engagement metrics where the deep ranking model
is at play, our method is able to achieve even bigger improvements
than PTA-F. Moreover, our method also improves site-wide satis-
faction and engagement metrics, all statistically significant at 95%
confidence level, while PTA does not.

5.3 Ablation Studies
In this section, we report (1) several ablation studies that confirm the
need of small sized heads as self-auxiliaries and (2) understanding
the improved generalization through analyzing the shared repre-
sentation.
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shows that our method achieves better overall performance on both
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Live experiment results. We conduct a series of A/B experiments
in the live system serving billions of users to measure the benefits
of our approach. A small percentage of user traffic is split into three
groups, where the current production model (control), PTA-F and
our method serve as the deep ranking model respectively. Exper-
iments are run for three weeks, during which we aggregate user
satisfactionmetrics and engagementmetrics.We track page-specific
metrics measured on the page which shows the recommendations,
and also site-wide metrics for understanding overall user enjoy-
ment.

Table 3 summarizes the live experiment results. We see while
both PTA-F and our method of self-auxiliaries improve page-specific
satisfaction and engagement metrics where the deep ranking model
is at play, our method is able to achieve even bigger improvements
than PTA-F. Moreover, our method also improves site-wide satis-
faction and engagement metrics, all statistically significant at 95%
confidence level, while PTA does not.

5.3 Ablation Studies
In this section, we report (1) several ablation studies that confirm the
need of small sized heads as self-auxiliaries and (2) understanding
the improved generalization through analyzing the shared repre-
sentation.

Task Metric Name PTA-F Self-Auxiliaries (Ours)
S1 AUC +0.22% +0.55%
S2 AUC +0.33% +0.33%
S3 AUC +1.13% +1.27%
S4 AUC +0.12% +0.12%
E1 AUC +0.27% +0.14%
E2 AUC +0.12% +0.12%
E3 RMSE -0.00% -0.08%
E4 RMSE -0.09% -0.18%

(a) Per-task performance.

Metric Name PTA-F Self-Auxiliaries (Ours)
Average AUC +0.351% +0.416%
Average RMSE -0.072% -0.153%

(b) Average performance for classification (AUC) and regression
(RMSE) tasks. Average AUC computes the average AUC over
S1, S2, S3, S4, E1, E2, and Average RMSE computes the average RMSE
over E3, E4.

Table 2: Offline evaluation results. Metrics are shown as relative
changes compared with the current production model (control)
where each task is trained with a single tower. PTA-F: 2 additional
towers of the same size as original task-specific towers are added for
each task; Self-Auxiliaries: Self-auxiliaries with neuron dropout
of rate 0.2. Metrics are computed on test data and are reported at 1
million training steps.

Metric Name PTA-F Self-Auxiliaries (Ours)
Page-specific Satisfaction +0.15%*** +0.17%***
Site-wide Satisfaction +0.01% +0.06%**

Page-specific Engagement +0.13%*** +0.15%***
Site-wide Engagement 0.00% +0.05%**

** p-value < 0.05; *** p-value < 0.01.
Table 3: Live experiment results. Metrics are shown in percentage
improvement compared with current production model (control).

5.3.1 Self-auxiliaries on single-task learning. To understand if self-
auxiliaries uniquely help multi-task learning, we conduct experi-
ments on the regular MNIST dataset in a single-task setting, using
three different model sizes with an increasing number of fully-
connected ReLU layers. Details on the architecture and hyperpa-
rameters can be found in Appendix A.3.

Figure 6a shows that self-auxiliaries improve performance on
small models, but do not significantly influence medium and large
models. Compared with Section 5.2.1 above where self-auxiliaries
have more advantages on larger models, this confirms that im-
provements from self-auxiliaries come from improved multi-task
generalization, instead of benefiting single-task learning.

5.3.2 Large Heads as Self-auxiliaries. We run ablation studies to
test the need of “small heads”: (1) ablation of self-auxiliaries com-
pletely and use a linear weighting of task losses as the training
objective (“MTL”); (2) large self-auxiliaries with size identical to
that of the original task sub-networks (“Large Self-Auxiliaries”);
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** p-value < 0.05; *** p-value < 0.01.
Table 3: Live experiment results. Metrics are shown in percentage
improvement compared with current production model (control).

5.3.1 Self-auxiliaries on single-task learning. To understand if self-
auxiliaries uniquely help multi-task learning, we conduct experi-
ments on the regular MNIST dataset in a single-task setting, using
three different model sizes with an increasing number of fully-
connected ReLU layers. Details on the architecture and hyperpa-
rameters can be found in Appendix A.3.

Figure 6a shows that self-auxiliaries improve performance on
small models, but do not significantly influence medium and large
models. Compared with Section 5.2.1 above where self-auxiliaries
have more advantages on larger models, this confirms that im-
provements from self-auxiliaries come from improved multi-task
generalization, instead of benefiting single-task learning.

5.3.2 Large Heads as Self-auxiliaries. We run ablation studies to
test the need of “small heads”: (1) ablation of self-auxiliaries com-
pletely and use a linear weighting of task losses as the training
objective (“MTL”); (2) large self-auxiliaries with size identical to
that of the original task sub-networks (“Large Self-Auxiliaries”);
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(a)Classification accuracy onMNIST
with self-auxiliaries.

(b) Comparison with big towers as
self-auxiliaries.

Figure 6: Ablation studies.

(3) pseudo-task augmentation (PTA) proposed by Meyerson and
Miikkulainen [36], where multiple task-specific sub-networks are
trained for the same task, and we adopt the variant in which all but
one of the sub-networks receive gradient update during training,
which is reported to have best performance on multi-task learning
(“PTA-F”).

Figure 6b shows the Pareto frontier on MultiMNIST, and we can
see that the proposed under-parameterized self-auxiliaries (red)
wins. This confirms the need for “small heads”. It also suggests
that the improvement comes from the implicit regularization as
discussed in Section 4, in addition to the data augmentation effect
as in PTA and other task augmentation methods. The fact that
under-parameterized self-auxiliaries does not significantly improve
single-task learning (while PTA does) further reflects the differ-
ence in our methods. In addition, PTA-F and large self-auxiliaries
add significantly more parameters during training. In contrast,
under-parameterized self-auxiliaries retain minimal parameteri-
zation overhead and little extra training cost, at the same time
achieving a better balance between training conflicts and multi-
task generalization.

5.3.3 Understanding the improved generalization. To gather more
insights on the improved multi-task generalization from the self-
auxiliaries, we analyze the learning dynamics of the shared model
architectures. More specifically, we look at the distribution of the
fraction of activated neurons aswell as activated neuron values from
the shared representation, i.e. h(·;θsh ) in Equation (3), which are
believed to correlate with model stability and prediction variations
in deep learning models [10].

Figure 7 shows the shared representation of size 100 on the Mul-
tiMNIST test data set (n = 20000). There is a clear separation in
the histograms of layer density (Figure 7a) and activated neuron
value distributions (Figure 7b): With self-auxiliaries, the shared
representation has more activated neurons on average, and the
distribution of those activated values has longer and heavier tails.
These analyses shed some light on the improved learning dynam-
ics for shared representation with self-auxiliary towers. With a
denser layer and neuron values varying greatly, the shared repre-
sentation likely lies in a richer subspace induced by h(·;θsh ), which
is likely to be able to encode more information across the tasks.
Therefore, we believe our observed gains from under-parameterized
self-auxiliaries are derived from improving the generalization of
the shared representation.

(a) Histogram of nonzero neuron
fractions in shared representation.

(b)Histogram of nonzero neuron val-
ues in shared representation.

Figure 7: Analysis of shared representation layer on MultiMNIST
test dataset.

5.4 Discussion
We demonstrate the effectiveness of our proposed method of under-
parameterized self-auxiliaries in three multi-task datasets covering
different applications including image classification, public recom-
mendation dataset and a real-world large-scale content recommen-
dation platform. Our proposed method is able to improve Pareto
efficiency in real-world multi-task problems compared with exist-
ing methods, with a negligible training overhead and no additional
serving cost. It works well on different model architectures and
different types of tasks. The ablation studies suggest the adoption of
“small heads” as self-auxiliaries, in addition to shedding some light
on the improved multi-task generalization dynamics as a result.

Further, we observe the greatest benefit of our method with high
capacity model architectures. As larger models introduce gener-
alization challenges for multi-task learning as discussed in Sec-
tion 3, this result supports our insights from Section 4 that under-
parameterized self-auxiliaries help achieve a better balance between
task conflict mitigation and multi-task generalization. We also ob-
serve that the performance of self-auxiliaries can be improved by
further reducing the parameterization of the self-auxiliaries. Tech-
niques such as average pooling and adding bottleneck layers can
be treated as hyperparameters to optimize model performance.

6 CONCLUSION
In this paper, we showed an intriguing trade-off between minimiz-
ing task training conflicts and improving multi-task generalization
in multi-task models. Notably, larger models are not necessarily bet-
ter than smaller ones in terms of their performance across multiple
tasks. Drawing from our findings, we propose the use of under-
parameterized self-auxiliaries to automatically balance multi-task
generalization with mitigating task conflicts via implicit regular-
ization. By adding small-capacity towers on the same tasks, large
models are able to learn a representation that generalizes to mul-
tiple tasks better, while maintaining the flexibility and capacity
to mitigate task conflicts during training. Experimental results on
benchmark datasets and a real-world large-scale content recom-
mendation platform demonstrated the effectiveness of our proposed
method in a number of multi-task applications.
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A APPENDIX
A.1 Convexity of the Pareto Frontier

Proof of Proposition 1. For ease of presentation, we only show
the proof for number of tasks T = 2. The proof naturally general-
izes to T > 2. Let P(θ ) = (L̂1(θ ), L̂2(θ )) denote the feasible point
for θ ∈ Θ. By definition of a convex curve, we only need to show
that for any two points P(θ1), P(θ2) on the Pareto frontier, the line
connecting them, i.e. λP(θ1) + (1 − λ)P(θ2),∀λ ∈ [0, 1] is above the
Pareto frontier. Because Lt (θ ) is convex in θ , L̂t (θ ) is also convex
in θ , for t = 1, 2. By convexity, we have

L̂1(λθ1 + (1 − λ)θ2) ≤ λL̂1(θ1) + (1 − λ)L̂1(θ2),

L̂2(λθ1 + (1 − λ)θ2) ≤ λL̂2(θ1) + (1 − λ)L̂2(θ2),
(6)

Figure 8: Pareto frontier is convex when objectives are convex.

where λθ1 + (1 − λ)θ2 =: θ0 ∈ Θ by convexity of Θ. This means
that for every point (λL̂1(θ1)+(1−λ)L̂1(θ2), λL̂2(θ1)+(1−λ)L̂2(θ2),
there exists a feasible point (L̂1(θ0), L̂2(θ0)) dominating it. As
shown in Figure 8, this suggests the Pareto frontier between P(θ1)
and P(θ2) is below the line λP(θ1)+ (1− λ)P(θ2),∀λ ∈ [0, 1]. There-
fore the Pareto frontier is convex. □

When some or all objectives are nonconvex, it is unlikely that the
Pareto frontier remains convex. But there is still something to say
about the shape of the Pareto frontier. We start with the case where
all tasks are forced to share all parameters, i.e. θ = θsh . Consider
square loss for regression tasks for ease of visualization. Let Y1 =
(y11, ...,y

1
n )

⊤,Y2 = (y21, ...,y
2
n )

⊤ and f̂θ = ( f̂ (x1), ..., f̂ (xn ))⊤. Then
L̂t (θ ) is the squared Euclidean distances between Yt and f̂θ . Now
assume that fθ is over-parameterized enough so that f̂θ is able to
fully populate the n-dimensional space. In other words, for any Y =
(y1, ...,yn ), there exists θ ∈ Θ such thatL(fθ (xi ),yi ) = 0,∀i . In this
case, it is obvious to see that Pareto optimality is obtained when f̂θ
is a linear combination ofY1 andY2, as shown in Figure 9, i.e. where√
L̂1(θ ) +

√
L̂2(θ ) = ∥Y1 − Y2∥2. Therefore the Pareto frontier is

convex. Similar arguments can be made with other convex loss
functions.

When task-specific parameters are allowed, over-parameterized
multi-task models can achieve zero training loss. In this case the
Pareto frontier is an orthant, which is also convex. Note that the
Pareto frontier discussed above is the optimal training loss value

Figure 9: Training loss trade-off for over-parameterized fully-
shared multi-task model.

considering all possible fθ ∈ H , without considering optimiza-
tion error. However this provides some justification for using lin-
ear weighting methods for over-parameterized multi-task learning
models.

A.2 Experiment Details on Synthetic Data
A.2.1 Details on data generation. Inspired by Finn et al. [17] and
Ma et al. [34], we generate a multi-task dataset and define each task
as a regression from the input to the output, with the output being
a combination of sine waves. To introduce task conflicts together
with task correlation, we let the two tasks share a small subset of
frequencies. More specifically, the synthetic dataset is generated as
follows:

(1) Generate the frequency sets used by the two tasks.W1 = {i ∈
N : 0 ≤ i ≤ 29 or 50 ≤ i ≤ 79 or 100 ≤ i ≤ 129} andW2 =
{i ∈ N : 25 ≤ i ≤ 49 or 75 ≤ i ≤ 99 or 125 ≤ i ≤ 149}, so
that they have overlapping but mostly different frequencies.

(2) Generate shared inputs. Let input dimension D = 200 and
generate xd ∼ U [−1/2, 1/2] for 1 ≤ d ≤ D.

(3) Generate outputs. Let x =
∑D
d=1 xd and generate e1, e2 ∼

N (0, 1). The labels y1, y2 for the two regression tasks are
defined as:

y1 =
∑

w1∈W1

(w1x + 0.2e1)

y2 =
∑

w2∈W2

(w2x + 0.2e2),
(7)

(4) Repeat Step 2-3 ntrain = 100000 times to generate training
dataset, and ntest = 10000 times to generate test dataset.

Figure 10 shows the shape of the two tasks as a function of x . We
adopt the shared-bottom model architecture with 2 shared hidden
layers of size 250 and 125 each with ReLU activation, with the input
as (x1, ...,xD ). For the two task-specific towers for the output y1
and y2, we fix the size of hidden ReLU layers to be 100 and vary
the number of hidden layers from 0 to 9. The regression loss is the
mean-squared error between the prediction and the true value. The
resulting Pareto frontier on the test dataset is shown in Figure 1a.

A.3 Experiment Details on MultiMNIST and
MultiFashion

A.3.1 Experiment setup. The dataset is randomly split into a train-
ing data set of size 100,000 and a test dataset of size 20,000. Figure 11
shows the architectures for the small/medium/large models in the
experiments, with an increasing number of shared hidden layers
and task-specific hidden layers. SGD optimizer with momentum =
0.9 is used and batch size is fixed at 256.
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Accu-L (%) Accu-R (%)

Small

MTL 90.95 88.92
Uncertainty 91.56 89.59
MGDA-UB 90.09 89.09
PCGrad 91.33 88.88

Self-Auxiliaries 91.49 89.19

Medium

MTL 91.85 89.51
Uncertainty 91.86 89.92
MGDA-UB 91.44 89.62
PCGrad 91.79 89.85

Self-Auxiliaries 92.20 90.12

Large

MTL 91.95 90.82
Uncertainty 92.45 90.68
MGDA-UB 92.45 90.67
PCGrad 92.56 90.69

Self-Auxiliaries 92.80 91.03
(a) MultiFashionMNIST dataset.

Accu-L (%) Accu-R (%)

Small

MTL 81.26 80.96
Uncertainty 82.46 81.09
MGDA-UB 81.36 81.08
PCGrad 81.42 80.94

Self-Auxiliaries 82.70 81.19

Medium

MTL 81.90 81.76
Uncertainty 82.83 82.25
MGDA-UB 82.38 81.97
PCGrad 82.30 81.82

Self-Auxiliaries 83.06 82.38

Large

MTL 82.72 81.72
Uncertainty 82.99 82.25
MGDA-UB 82.68 82.06
PCGrad 82.78 82.22

Self-Auxiliaries 83.37 82.67
(b) MultiFashionMNIST dataset.

Table 4: Left and right accuracies (Accu-L and Accu-R) for Mul-
tiMNIST and MultiFashionMNIST dataset for different model
sizes.

Figure 10: An illustration of two tasks as a function of sum of
inputs x =

∑D
d=1 xd .

For each baseline method and each model architecture, the hy-
perparameters include learning rate and weight for each task if ap-
plicable. For self-auxiliaries, the tuning parameters include weight
γ , temperature for the auxiliary tower and width for the bottle-
neck layer if a bottleneck architecture (Figure 3c) is used. For every

method, we first perform 1000 runs for hyperparameters tuning,
and then do another 1000 runs with task weights varying from 0
to 1, evaluate each of them on the test dataset, and plot the Pareto
frontier (i.e. the Pareto optimal solutions from the 1000 runs).

A.3.2 Numerical results. In addition to the Pareto frontier reported
in Figure 4, we also present the numerical results here, by reporting
the middle point on the Pareto frontier. Table 4a and 4b summarize
left and right accuracies for different methods on both datasets
with different model sizes. Our proposed method of self-auxiliaries
achieves on-par performance with the best baseline methods on
small models, and outperforms all baseline methods on medium and
large models. The results again confirm our observation that the
larger the model, the greater the improvement our method exhibits
over the baselines.

A.4 Code
The code for the experiments in Section 5 is available at: https:
//github.com/double-blind-review-code/self-auxiliaries.

(a) Small model. (b)Medium model.

(c) Large model.

Figure 11:Model architectures for MultiMNIST and MultiFashion.
(a): Small model. (b): Medium model. (c): Large model.

Table 4: Left and right accuracies (Accu-L and Accu-R) for Mul-
tiMNIST and MultiFashionMNIST dataset for different model
sizes.

Figure 10: An illustration of two tasks as a function of sum of
inputs x =

∑D
d=1 xd .

For each baseline method and each model architecture, the hy-
perparameters include learning rate and weight for each task if ap-
plicable. For self-auxiliaries, the tuning parameters include weight
γ , temperature for the auxiliary tower and width for the bottle-
neck layer if a bottleneck architecture (Figure 3c) is used. For every

method, we first perform 1000 runs for hyperparameters tuning,
and then do another 1000 runs with task weights varying from 0
to 1, evaluate each of them on the test dataset, and plot the Pareto
frontier (i.e. the Pareto optimal solutions from the 1000 runs).

A.3.2 Numerical results. In addition to the Pareto frontier reported
in Figure 4, we also present the numerical results here, by reporting
the middle point on the Pareto frontier. Table 4a and 4b summarize
left and right accuracies for different methods on both datasets
with different model sizes. Our proposed method of self-auxiliaries
achieves on-par performance with the best baseline methods on
small models, and outperforms all baseline methods on medium and
large models. The results again confirm our observation that the
larger the model, the greater the improvement our method exhibits
over the baselines.

A.4 Code
The code for the experiments in Section 5 is available at: https:
//github.com/double-blind-review-code/self-auxiliaries.

(a) Small model. (b)Medium model.

(c) Large model.

Figure 11:Model architectures for MultiMNIST and MultiFashion.
(a): Small model. (b): Medium model. (c): Large model.
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