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ABSTRACT
Over the years we have seen recommender systems shifting fo-
cus from optimizing short-term engagement toward improving
long-term user experience on the platforms. While defining good
long-term user experience is still an active research area [30, 32],
we focus on one specific aspect of improved long-term user ex-
perience here, which is user revisiting the platform. These long
term outcomes however are much harder to optimize due to the
sparsity in observing these events and low signal-to-noise ratio
(weak connection) between these long-term outcomes and a sin-
gle recommendation. To address these challenges, we propose to
establish the association between these long-term outcomes and a
set of more immediate term user behavior signals that can serve as
surrogates for optimization.

To this end, we conduct a large-scale study of user behavior logs
on one of the largest industrial recommendation platforms serving
billions of users. We study a broad set of sequential user behavior
patterns and standardize a procedure to pinpoint the subset that has
strong predictive power of the change in users’ long-term visiting
frequency. Specifically, they are predictive of users’ increased visit-
ing to the platform in 5 months among the group of users with the
same visiting frequency to begin with. We validate the identified
subset of user behaviors by incorporating them as reward surro-
gates for long-term user experience in a reinforcement learning
(RL) based recommender. Results from multiple live experiments
on the industrial recommendation platform demonstrate the effec-
tiveness of the proposed set of surrogates in improving long-term
user experience.
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1 INTRODUCTION
Recommender systems are becoming an integral part of our daily
life by facilitating information acquisition and decision-making in
retail [10, 46], media [6, 15], travel [16, 18], food [54], news [33, 69]
and social platforms [55, 60]. Recommendation algorithms that fo-
cus on users’ immediate responses such as clicks and likes have
gained immense success over the years [15, 65, 68]. However, it has
become increasingly clear that over-indexing on short-term engage-
ment can lead to undesirable recommendations, such as clickbait
contents or pigeon-holing effects which hurt long-term user expe-
rience [9, 38, 67]. Recognizing the drawback of over-emphasizing
the short-term metrics, algorithm designers resort to optimizing
other objectives that are more aligned with the long-term user ex-
perience on recommendation platforms. As an example, Wu et al.
[58] argued the long-term goal of a recommender system is to not
only satisfy the user’s needs in the current session, but also to see
them come back to the platform more often in the future.

Optimizing long-term user experience is however challenging
as the desired long-term outcome is much sparser, noisier and nat-
urally manifests over a much longer horizon than the short-term
engagement signals. A natural question one would ask is: Are there
any alternative objectives that are predictive of the long-term out-
come, while being easier to optimize? An objective that is easier to
optimize should have stronger connection to the recommendation.
For example, the effect of a recommendation on a user’s behavior
in the current session (e.g. clicks, likes) is much easier to establish
than in the future sessions (e.g. returning to the platform in one
month). Meanwhile, we also need to ensure that optimizing the
alternatives will lead to improved long-term user experience.
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The effect of a recommendation on a user’s long-term expe-
rience is manifested through the aggregation of their sequential
medium-term behaviors. Motivated by this, we start with identify-
ing medium-term user behaviors as alternatives and study their as-
sociations with the long-term user experience, in particular changes
in visiting frequencies. On an industrial recommendation platform
serving billions of users, we analyze various evolving behavior
patterns of the users who visited the site with increasing frequency
over a 5-month time period. Specifically, we identify a subset of
sequential consumption patterns, diversity of the consumed con-
tents being one of them, that are associated with increased visiting
frequencies in the long term. These behavior patterns have im-
pressive predictive power in differentiating users’ future long-term
experience. In particular, they are predictive of which users will
revisit the platform more often in 5 months among a group of users
with the same visiting frequency to begin with.

To validate the effectiveness of leveraging the identified sequen-
tial user behavior patterns in optimizing long-term user experience,
we experiment with incorporating them as reward surrogates in
an RL-based recommender. The idea of using surrogate outcomes
as a proxy for long-term outcomes was first proposed in medicine
and biostatistics [24, 42, 56]. Recent literature in causal inference
showed that even when the long-term outcome is available, using
surrogate outcomes improves the efficiency in estimating treatment
effects [4, 62]. In our case, the proposed reward surrogate enables
the system to nudge the users toward the desired user behavior
patterns for an improved long-term experience. Live experiments
show the effectiveness of these behavior patterns as surrogates.

To summarize, the contributions of our work include:
• Measurements: We propose a set of metrics to capture
users’ sequential and temporal consumption patterns.

• Analytical insights:We identify a set of user behavior pat-
terns that are associated with users’ long-term experience.

• Surrogate selection: We standardize the procedure of se-
lecting user behavior patterns as surrogates for long-term
user experience, based on robust predictive modeling.

• Algorithmic Improvements: We validate the efficacy of
the surrogates in optimizing long-term user experience in
an RL recommender.

2 RELATEDWORK
Understandinguser behavior on recommender systems. There
is a large body of work on understanding user behavior in recom-
mender systems from various fields, ranging from human-computer
interaction [28, 35, 45, 59], marketing [3, 48, 64] and information re-
trieval [2, 31, 40, 52, 61]. For example, Knijnenburg et al. [28], Xiao
and Benbasat [59] provided insights into the mechanisms underly-
ing the user experience in recommender systems. Structural and
probabilistic models were proposed to learn the evolving user pref-
erences [3, 40, 67]. Content-wise, Goel et al. [17] studied the distri-
bution of user interests in long-tail and niche contents.

User behavior on recommender systems is a combined effect of
user preference, algorithmic recommendation and other confound-
ing factors such as personality characteristics. Anderson et al. [2]
studied the algorithmic effects of recommendations on the con-
tent diversity of users’ consumption. Villermet et al. [52] proposed

to disentangle human and algorithmic behavior in online music
consumption to better determine the effect of recommendation.
Hansen et al. [19], Zhou et al. [70] studied consumption patterns on
video and music streaming platforms as part of the feedback loop
of the recommendation algorithms and user behaviors. Karumur
et al. [26], Xiao and Benbasat [59] showed the effect of personal
and situational characteristics on user behaviors on recommender
systems. Another line of work is around building simulation or
conducting field experiments to understand user behaviors while
controlling for potential confounding [9, 21, 64].

While there has been extensive work on analyzing user behavior
on recommender platforms, limited work has been done on analyz-
ing the sequential and evolving aspect of user behaviors toward
understanding their long-term experience on the platform, which
is the main contribution of our work.

Optimizing long-term user experience in recommender sys-
tems. Improving long-term user experience usually entails opti-
mizing a noisy, sparse and delayed signal. There are efforts that aim
at optimizing this signal directly by imposing additional assump-
tions on the environment and the users. For example, Wu et al. [58]
assumed a stationary distribution of user preference and recom-
mendation candidates and optimizes for user return directly; Zhang
et al. [66] proposed to leverage a counterfactual estimate of the
delayed reward to avoid waiting on long-term labels. Both works
adopted the bandit framework and assumed that the recommender
does not change users states or alter their interests, which however
are often violated in real world recommendation products.

RL for recommender systems has achieved notable success in
the past few years [5, 11, 14, 22, 34, 44, 69], one reason being that
they naturally account for the shifts in user states due to the rec-
ommendations. There has been work on improving longer term
user experience by extending the planning horizon of RL-based
recommenders. For example, Zheng et al. [69] introduced a user
activeness score which is used as a reward for future returns; Ji
et al. [23] proposed to predict the future long-term value of the
fresh items; Zou et al. [73] developed a hierarchical LSTM to model
complex user behaviors with the reward containing delayed metrics
such as return time. These works either propose to advance user
behavior modeling to better predict the long-term behavior yet still
suffer from the delay in collecting the reward [69], or rely on exist-
ing input features to impute the long-term user behavior [23, 73].
Our work differs in that we propose to establish the connection
between long-term user experience and a set of sequential user be-
haviors that may not be captured by the existing system. We then
leverage the insights derived from these analyses by incorporating
those behaviors as reward surrogates in RL-based recommenders.

Another line of research on improving long-term user experience
is around avoidingmyopic recommendations and attending to users’
long-term interests [8, 38, 39]. This includes a better exploration-
exploitation trade-off [13, 51], diversity-focused recommendations
[1, 2, 71, 72] and distribution-aware recommendations [27, 49, 67].
Sequential recommendation algorithms [20, 25, 50] were also pro-
posed to adapt to users’ changing interests.

Surrogate outcomes. A critical challenge in estimating long-term
treatment effects in clinical trials is that long-term outcomes are
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often observed with a delay of months or even years [4]. The idea
of surrogate outcomes was first proposed to address this challenge
[42]. It was also shown that even when the long-term outcome is
observed, using surrogate outcomes can improve the efficiency in
estimating treatment effects [4] and policy evaluation [62].

The notion of surrogate has also been studied in RL literature
when the true reward is noisy or costly to be observed [12, 53, 63]. A
common approach is to hand-engineer a dense reward by leveraging
domain knowledge which serves as a reward surrogate to guide
the policy learning. Such approaches have theoretical guarantees
under some assumptions [37] and have been successful in multiple
RL application scenarios [29, 43]. However, we have not seen much
work on leveraging domain knowledge to design reward surrogates
for recommender systems. Our work aims at bridging this gap and
identifying interpretable user behavior patterns as surrogates to
improve the long-term user experience in these systems.

3 MEASUREMENTS
As we will see shortly, improved long-term user experience such as
increased visiting frequency to the platform, is a sparse and noisy
signal that manifests over a time horizon of weeks or even months,
making it difficult to optimize directly. This motivates us to search
for medium-term user behavior signals as surrogate objectives. To
be used as a surrogate, the user behavior signals should 1) exhibit
stronger and cleaner association to the recommendation than the
long-term outcomes for easier optimization, and 2) connect to the
long-term outcomes such that optimizing the surrogate leads to
improved long-term user experience.

In this section, we define a set of candidate metrics for measuring
user behavior patterns on recommendation platforms over medium-
term horizons. In the next section, we present the analysis on the
evolution of these user behaviors over time and their associations
with long-term user experience.

We first introduce the notion of a topic cluster, which will be
used in defining diversity-related user behaviors below. Similar to
[13], we define the topic clusters for each item by: 1) taking the
item co-occurrence matrix, where entry (𝑖, 𝑗) counts the number of
times item 𝑖 and 𝑗 were consumed by the same user consecutively;
2) performing matrix factorization to generate one embedding for
each item; 3) using k-means to cluster the learned embeddings into
10K clusters; 4) assigning the top 3 nearest clusters to each item.

We use 𝑆 to denote a user’s consumption history over a cer-
tain time period, where 𝑆 may contain repeated items if the user
consumes a content more than once.

3.1 Diversity
Diversity [36, 41, 47] measures the broadness of the set of con-
tents that a user engages with. We propose the following three
measurements of diversity.

3.1.1 Ratio-based Diversity. We define the ratio-based diversity as
the proportion of unique topic clusters in 𝑆 :

𝐷ratio (𝑆) =
|unique topic clusters in 𝑆 |

|𝑆 | , (1)

where | · | returns the size of the collection, i.e. |𝑆 | is the number of
items (including repeated ones) the user consumed.

3.1.2 Distribution-based Diversity. A user’s consumption history
can be viewed as a distribution over topics. Let 𝑁𝑖 be the number
of consumed items from topic 𝑖 , the entropy-based diversity is:

𝐷entropy (𝑆) = −
∑
𝑖

𝑝𝑖𝑙𝑜𝑔(𝑝𝑖 ), (2)

where 𝑝𝑖 = 𝑁𝑖/
∑
𝑖 𝑁𝑖 is the proportion of items from topic 𝑖 in 𝑆 .

One caveat of using entropy as the diversity measure is that it
naturally grows with the cardinality of 𝑆 . For example, a uniform
distribution on two topic clusters has entropy −𝑙𝑜𝑔(1/2) ≈ 0.69,
while a uniform distribution on five has entropy −𝑙𝑜𝑔(1/5) ≈ 1.61.
In other words, the same shape of topic distribution (e.g. uniform)
on different supports of 𝑆 will lead to different entropy measures.
To better capture the shape of the distribution regardless of the
support, we propose to use the negative of the Kullback–Leibler
(KL) divergence between the topic distribution 𝑃 and the uniform
distribution 𝑃𝑢 on the same support as the diversity measure:

𝐷KL (𝑆) = −𝐾𝐿(𝑃 | |𝑃𝑢 ) = −
∑
𝑖

𝑝𝑖𝑙𝑜𝑔(𝑝𝑖/(1/𝐶))

= 𝐷entropy (𝑆) − 𝑙𝑜𝑔(𝐶),
(3)

where 𝐶 := |𝑖 : 𝑝𝑖 > 0| is the number of clusters the user has
consumed in 𝑆 . We name this measure 𝐷KL (𝑆) as KL-divergence
diversity. 𝐷KL (𝑆) measures the concentration of the user’s inter-
ests, i.e. how different is their interest distribution from a uniform
distribution. With this normalization, a uniform distribution on a
set 𝑆 of two topic clusters vs. five will both have 𝐷KL (𝑆) = 0.

3.2 Repeated Consumption
When a user is particularly interested in a certain item on the
platform, she may interact with it repeatedly. We measure the
user’s repeated consumption behavior from a user consumption
history 𝑆 as the ratio of repeated consumption from 𝑆 :

𝑅repeatedCons (𝑆) =
|{𝑠 ∈ 𝑆 : s has been consumed before}|

|𝑆 | . (4)

As an example, for a user with 𝑆 = {𝑠1, 𝑠1, 𝑠2, 𝑠1, 𝑠3, 𝑠4, 𝑠3}, her re-
consumption ratio is 𝑅𝑟𝑒𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑆) = 3/7 as there are two
repeated consumption of 𝑠1 and one of 𝑠3.

3.3 High-Quality Consumption
The consumption time measures the engagement level of an item
that the click-based signals do not capture. As the contents on the
platform can be of various lengths, we measure the quality of a con-
sumption based on the completion ratio, i.e. the ratio between the
consumption time and the total length of the item. A high-quality
consumption is defined as having greater than 𝑋% completion ratio
or greater than 𝑌 consumption time1. High-quality consumption
ratio is the proportion of consumption that are high-quality:

𝑅highQualCons (𝑆) =
|{𝑠 ∈ 𝑆 : s is a high-quality consumption}|

|𝑆 | .

(5)

1We omitted the value for 𝑋 , 𝑌 here and 𝑍 below for business-compliance reasons.
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3.4 Persistent Topics
The fact that a user consumes an item from a certain topic cluster
does not necessarilymean that she is interested in that topic. It could
be a transient or transactional interest (e.g. looking up some content
for a family member or performing a one-time task) instead. This
motivates us to define a metric to capture the user’s true interest
by only looking at topic clusters that she has repeatedly consumed.
We define persistent topic ratio as the portion of topic clusters with
more than 𝑍 number of consumption from the user’s history 𝑆 :

𝑅persistentTopic (𝑆) =
|unique topic clusters with more than Z consumption in 𝑆 |

|unique topic clusters in 𝑆 | .

(6)

3.5 Page-Specific Revisits
A recommendation platform usually providesmultiple surfaces/pages
for users to interact with. Given the same amount of time spent
on the platform, users may vary in their interaction patterns with
different pages on the platform. To study users’ revisiting behavior,
we look at the time it takes for a user to come back and revisit each
surface/page on the platform. The surfaces/pages we look at are:
(1) Home page: the first destination of the recommendation website;
(2) Search page: the page for users to search for a particular content;
(3) Consumption page: the page for users to consume an item.

We define the page-specific revisit time as:

𝑇revisit (𝑆, Page) = 𝐴𝑣𝑔(Time between two consecutive
high-quality consumptions from Page), (7)

where Page ∈ {Home, Search,Consump}. We focus on visits with
at least one high-quality consumption during that visit.

4 ANALYSIS
In this section, we present the analysis of the sequential behavior
patterns in Section 3 and their relationship with long-term user
experience, on a real world content recommendation platform.

4.1 Data
We study one of the largest industrial recommendation platforms
serving billions of users, and analyze the user visiting logs over
a 20-week period 2. Users on recommendation platforms are het-
erogeneous in their visiting frequency. Some visit the platform
occasionally, while others regularly. We call a user low-frequency if
they visit less than𝐴 days3 over a 14-day window, and consistently
behave like that over at least two 14-day windows. We call a user
high-frequency if they visit more than 𝐵 days over a 14-day window,
and consistently behave like that over at least two 14-day windows.

We divide the 20-week period into 10 time buckets of 2 weeks (14
days). For every user, we compute their behavior pattern statistics
defined in Section 3 over each bucket, and analyze their temporal
patterns across the whole period. We study the users who started
as low-frequency users in the beginning of the analysis period.
Some of them increased their returning frequency and became
2We performed the same analysis over two different 5-month periods and results were
consistent.
3We omitted the value for𝐴 and 𝐵 here for business-compliance reasons.

high-frequency users at the end of the analysis period, while others
remained as low-frequency users. As their experience on the plat-
form improves, we imagine users will return to the platform more
often. In other words, the improved long-term user experience is
manifested as an increase in users’ long-term visiting frequency.

4.2 Analysis Results
Here we present the results on the user behavior patterns in Section
3, and their association with improved long-term user experience
manifested through an increase in long-term visiting frequency.

4.2.1 Statistics on Improved Long-Term User Experience. We first
present some descriptive statistics on the pattern of increased visit-
ing frequency as an improved long-term user experience.
Sparsity. Among the 2 million users who started as low-frequency
users, only about 2.3% of them became high-frequency users at the
end of the 5 months, making the changes in visiting frequency an
extremely sparse signal as a measure for long-term user experience.
Heterogeneity. Among the low-frequency users who transitioned
to high-frequency users in the same time period, their paths to
becoming high-frequency users are very different. Fig. 1a illustrates
the transition patterns of 10 randomly sampled low-frequency users
who became high-frequency in 5 months. We see that some low-
frequency users transitioned to high-frequency directly in less than
a month, while others gradually increased their visiting frequency
over a much longer horizon, with ups and downs in between and
eventually became high-frequency. The heterogeneity of these re-
visiting patterns results in a very low signal-to-noise ratio for long-
term user experience if attempting to model and optimize directly.
Long time horizon. We also summarize the time it takes for an

(a) A sample of 10 low-frequency
users who became high-frequency in
5 months.

(b) Distribution of time (in weeks) it
takes for for increased visiting fre-
quencies.

Figure 1: Descriptive plots for visiting frequencies over time.

average low-frequency user to become high-frequency over time.
We extend the time period of the analysis to 10 months (40 weeks)
and Figure 1b shows the distribution of the time it takes for a
low-frequency user to become high-frequency. The average time
horizon is 15.32 weeks and the median is 14 weeks, suggesting that
an improved user experience is a long and gradual process.

In summary, long-term user experience is a sparse, noisy and
delayed signal that is hard to optimize directly. Next, we look at
medium-term user behavior patterns proposed in Section 3 as sur-
rogates. To understand their relationship with the long-term user
experience, we compare between the low-frequency users who
became high-frequency at the end of the 5-month period (denoted
as ‘L-H’) against those who remained low-frequency (‘L-L’).
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4.2.2 Sequential Consumption Diversity Patterns. We first study the
association between increased visiting frequency and sequential di-
versity patterns: When the users visit the platform more frequently
in the long term, do they gradually consume a larger set of topics,
or do they develop a more concentrated interest over time?
Ratio-Based Diversity Patterns. Figure 2a shows that, not sur-
prisingly, when low-frequency users transition to high-frequency
users, they gradually consume more topics. However, when we
look at ratio-based diversity 𝐷ratio (𝑆) as defined in Eq. (1), we see
a reverse trend in that the users had a lower ratio-based diversity
as they increase their visiting frequency (Figure 2b)4.

(a) Number of topic clusters. (b) Ratio-based diversity 𝐷ratio (𝑆) .

Figure 2: Patterns for number of topics and ratio-based diversity.

Distribution-Based Diversity Patterns. Another set of diversity
metrics proposed in Eq. (2) and (3) measures the user behavior
patterns as a distribution over the topic clusters. Figure 3a shows
that as the low-frequency users increased their visiting frequency,
the entropy of the topics they consume is also increasing. How-
ever, their KL-divergence diversity 𝐷KL (𝑆) is decreasing over time,
suggesting that their interest distribution is moving further away
from a uniform distribution. These observations corroborate our
findings above, in that when users visits more often, they 1) con-
sume a more diverse set of topics as measured by topic counts and
entropy-based diversity metrics, and 2) also form a more concen-
trated interest around a subset of topics as indicated by the decrease
in the ratio-based and KL-divergence based diversity metrics.

(a) Entropy diversity 𝐷entropy (𝑆) . (b) KL-divergence diversity 𝐷KL (𝑆) .

Figure 3: Patterns for distribution-based diversity.

The first part of our findings is aligned with [2] which stated that
generalist users (i.e. users with a broader interest measured by a
lower similarity score from their past history) are much more likely
4Note that all the figures in this paper include the standard errors of the metrics, but
some are hardly visible as the standard error of the average statistics are very small
with very large sample sizes (∼ 𝑂 (1/

√
𝑛) where 𝑛 is the sample size, according to

central limit theorem).

to remain on a music streaming platform than specialist users. The
second part of our finding, which to our knowledge has not been
discussed before, further characterizes that users develop more
concentrated and consistent interests on a subset of topics as they
stay and revisit the platform more often.

4.2.3 Sequential Consumption Quality Patterns. We examine re-
peated consumption, high-quality consumption, and persistent top-
ics in Section 3.2-3.4 with increased visiting frequency over time.
RepeatedConsumption andHigh-QualityConsumption.We
see that as the users visit the platform more often, a larger portion
of their consumption history were on items that they have con-
sumed before (Figure 4a); and a larger proportion were high-quality
consumption (Figure 4b). In addition, users more than doubled their
high-quality consumption ratio (from below 20.0% to 46.0%), when
transitioning to high-frequency users (Figure 5).

(a) Repeated consumption ratio
𝑅repeatedCons (𝑆) .

(b)High-quality consumption ratio
𝑅highQualCons (𝑆) .

(c) Persistent topic ratio
𝑅persistentTopic (𝑆) .

Figure 4: Patterns for repeated consumption, high-quality con-
sumption and persistent topics.

The significant increase in repeated item consumption is sur-
prising. It however validates our observation in Section 4.2.2 that
the users develop more concentrated interests as they revisit the
platform more often.
Persistent Topics. Figure 4c shows that an increased proportion
of persistent topics is associated with improved long-term user
experience. The persistent topic ratio more than tripled (from 15.3%
to 46.9% in Fig. 4c) when an average low-frequency user transitioned
to a high-frequency user over time, indicating that more contents
they consumed are indicative of their true interests as opposed to
transient and transactional interests.

4.2.4 Sequential Page Revisit Patterns. We examine if an improved
long-term user experience entails more frequent visits to a specific
page/surface. To control for confounding caused by the amount of
consumption, we look at a subset of low-frequency users who con-
sumed the same number of items in the beginning. Figure 5 shows



KDD ’22, August 14–18, 2022, Washington, DC, USA Yuyan Wang et al.

the average time it takes for a user to come back and have a high-
quality consumption on Home Page, Search Page, and Consumption
Page respectively. We see that as the low-frequency users became
high-frequency, they visited all the pages more frequently (decreas-
ing trend of the blue curves in Fig. 5). Among them, the revisit
time to the homepage shows the biggest difference (especially in
the beginning) between the low-frequency users who became high-
frequency in the end (‘L-H’) and those who did not (‘L-L’)(Figure 5a).
This suggests an association that low-frequency users who visit the
Home Page more often are more likely to become high-frequency
users in the long term.

(a)𝑇revisit (𝑆,Home) . (b)𝑇revisit (𝑆, Search) .

(c)𝑇revisit (𝑆,Consumption) .

Figure 5: Average time (in hours) it takes between two consecutive
page visits with high-quality consumption, on low-frequency users
who consumed the same number of items in the first 4 weeks.

In summary, as low-frequency users gradually transition to high-
frequency, they consume contents from a broader set of topics
(Figure 2a and 3a); meanwhile, they also develop more concen-
trated interests with a sharper topic distribution (Figure 3b) and
engage with some topics more often than the rest (Figure 4c). In ad-
dition, they generate more repeated consumptions and high-quality
consumptions (Figure 4a and 4b), and visit specific pages of the
recommendation platform more often than others (Figure 5).

5 SURROGATE SELECTION
Now we describe the procedure to identify user behavior patterns
that strongly associate with the long-term user experience, specifi-
cally the transition from low-frequency to high-frequency users.

We use the same data and aggregation method as described in 4.1,
and use the user behavior patterns defined in Section 3 as features
toward predicting long-term user visiting frequency changes. We
segment the user behavior log of 20 weeks into 10 buckets of 14
days each, and extract the users who were low-frequency in the
2nd bucket. The features we include in the predictive modeling are:
(1) their behavior patterns in the 2nd bucket (when all users were
low-frequency), and (2) the difference in their behavior patterns be-
tween the two time buckets. This captures the sequential/evolving

aspect of the behavior patterns, denoted with superscript ‘diff’ in
the results below, while controlling for the possible confounding
introduced by visiting frequency. The response is a binary indicator
on whether a low-frequency user became high-frequency at the
end of the 5-month study period.

We choose random forests [7] as the model class, as it offers us 1)
flexibility in handling extremely imbalanced data; 2) interpretabil-
ity so one can easily analyze feature importance5 to pinpoint the
subset of user behavior patterns with the strongest associations;
and 3) robustness to different user distributions to reduce poten-
tial spurious correlation between the user behavior patterns and
the long-term outcome. For 3), if a user behavior pattern has high
feature importance across different user distributions (e.g. created
by bootstrapping, i.e., sampling users with replacement), then it is
more likely to be causal to the response, therefore more likely to
be an effective surrogate for the long-term objective, i.e. visiting
frequency increase over time.

A single run of the random forest model with 200 trees and max
tree depth 5 shows that the proposed set of user behavior patterns
reaches test AUC 0.691 (training AUC 0.697). The number is quite
impressive considering that we are only using the behavior patterns
from the beginning (1st and 2nd 2-week buckets) to predict what
will happen 5 months later, among a group of similar users to begin
with. To refine the predictive modeling and control for possible
confounding introduced by the amount of activities, we propose
stratified modeling by slicing the users into segments according to
a fine-grained activity measure, which is the number of consumed
items in the first bucket.

Table 1 summarizes the feature importance results for each slice
and overall, where the cutoff-points are picked so that each segment
has roughly the same number of users. Full results on the feature
importance scores for all features can be found in Appendix. We see
that entropy-based diversity 𝐷entropy (𝑆) and average time between
homepage visits 𝑇revisit (𝑆,Home) consistently appear as the top
features in predicting visiting frequency increases across different
user segments. We therefore choose them as the surrogates for
long-term user experience.

6 EXPERIMENTS
We conduct a series of live A/B experiments on the same industrial
recommendation platform to verify that optimizing these surrogates
indeed leads to improved long term user experience. Experiments
are run on a REINFORCE [57] recommender [11] in an RL setting.
We would like to point out that our proposed approach also applies
to supervised learning based recommenders, as it serves as a general
methodology to replace the optimization objective with surrogate
objectives, regardless of the optimization framework.

6.1 Background: a REINFORCE Recommender
Chen et al. [11] formulates the recommendation problem as a
Markov Decision Process (MDP) over (S,A, P, 𝑅,𝛾), where S is the
state space representing the users’ interest and context,A is the dis-
crete action space and 𝑎 ∈ A a recommended item. P : S×A×S →

5Here the importance is measured by the average decrease in Gini impurity, i.e.∑
𝑐 𝑃 (𝑐) · (1 − 𝑃 (𝑐)) where 𝑃 (𝑐) is the probability of class 𝑐 in the training data.
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# Consump AUC Top 5 important features

(0, 𝑐1] 0.57
𝑇revisit (Home) , 𝐷entropy,
𝑇revisit (Consump) , 𝐷KL,𝑇 diff

revisit (Home)

(𝑐1, 𝑐2] 0.62
𝑇revisit (Home) , 𝐷entropy, 𝐷diff

entropy
𝑅diff
repeatedCons,𝑇revisit (Search)

(𝑐2, 𝑐3] 0.63
𝑇revisit (Home) , 𝐷entropy,
𝑇 diff
revisit (Search) , 𝐷

diff
KL , 𝐷

diff
entropy

(𝑐3, 𝑐4] 0.62
𝑇revisit (Home) ,𝑇 diff

revisit (Home) ,
𝐷diff
entropy, 𝐷KL, 𝐷diff

KL

(𝑐4, 𝑐5] 0.58
𝑇revisit (Home) , 𝑅diff

repeatedCons,
𝑇 diff
revisit (Home) ,𝑇 diff

revisit (Consump) , 𝐷diff
entropy

(𝑐5, ∞) 0.61
𝑇revisit (Home) ,𝑇 diff

revisit (Home) ,
𝑇 diff
revisit (Consump) , 𝐷diff

entropy, 𝑅diff
persistentTopic

Overall 0.61
𝑇revisit (Home) ,𝑇 diff

revisit (Home) ,
𝐷entropy, 𝐷diff

KL , 𝐷
diff
entropy

Table 1: Feature importance results sliced by number of consump-
tion in the first 14 days (1st column). We omitted the actual values
for 0 < 𝑐1 < 𝑐2 < 𝑐3 < 𝑐4 < 𝑐5 for business-compliance reasons.

R is the state transition probability and 𝑅 : S × A → R is the re-
ward function, with 𝑟 (𝑠, 𝑎) as the immediate reward (user feedback)
of action 𝑎 under state 𝑠 . 𝛾 < 1 is the discounting factor for future
rewards. Given the latent user state 𝑠𝑡 , a softmax policy over the
item corpus A is parameterized by \ as:

𝜋\ (𝑎 |𝑠𝑡 ) =
exp(u⊤𝑠𝑡 v𝑎)∑

𝑎′∈A exp(u⊤𝑠𝑡 v𝑎′)
, ∀𝑎 ∈ A, (8)

Here u𝑠𝑡 is the latent user state and v𝑎 is the embedding for item
𝑎, and both are learned together with other variables in the net-
work. At time 𝑡 , the agent acts according to 𝜋\ (𝑎 |𝑠𝑡 ). The policy
parameters \ are learned using REINFORCE [57] to maximize the
cumulative reward over all trajectories. In an offline batch learning
setting, importance sampling is applied to correct for the off-policy
distribution shift between the learned policy 𝜋\ (·|𝑠) and behav-
ior policy 𝛽 (·|𝑠) that generates the trajectories. This results in a
gradient estimate for \ as

∇\J (𝜋\ ) =
∑

𝑠𝑡∼𝑑𝛽

𝑡 (𝑠),𝑎𝑡∼𝛽 ( · |𝑠𝑡 )

[
𝜋\ (𝑎𝑡 |𝑠𝑡 )
𝛽 (𝑎𝑡 |𝑠𝑡 )

𝑅𝑡 (𝑠𝑡 , 𝑎𝑡 )∇\ log𝜋\ (𝑎𝑡 |𝑠𝑡 )
]
,

(9)
where𝑅𝑡 =

∑𝑇
𝑡 ′=𝑡 𝛾

𝑡 ′−𝑡𝑟 (𝑠𝑡 ′, 𝑎𝑡 ′) is the discounted future return, and
𝑑
𝛽
𝑡 (𝑠) is the state visitation probability under 𝛽 . We incorporate the
proposed user behavior patterns into the learning objective of the
agent by reshaping 𝑅𝑡 with the identified surrogates.

6.2 Consumption Diversity as Surrogate
6.2.1 Reward Formulation. As shown in Section 4 and 5, the entropy-
based diversity𝐷entropy (𝑆) is highly predictive of increased visiting
frequency over time. Denoting𝑅𝑜𝑡 (𝑠𝑡 , 𝑎𝑡 ) as the original reward used
in the REINFORCE recommender, we reshape the reward by

𝑅𝑡 (𝑠𝑡 , 𝑎𝑡 ) = 𝑅𝑜𝑡 (𝑠𝑡 , 𝑎𝑡 ) · exp
[
𝑚

(
𝐷entropy (𝑆𝑡 ) − 𝐷entropy (𝑆𝑡−1)

) ]
,

(10)

where 𝐷entropy (𝑆𝑡 ) measures the consumption diversity over a 2-
weekwindow including the current consumption𝑎𝑡 , and𝐷entropy (𝑆𝑡−1)
the consumption diversity over the same window but excluding the
current consumption. The reward formulation with diversity as the
surrogate is intuitive: When the recommended item is consumed6
and it increases the diversity of the user’s consumption history
(i.e. 𝐷entropy (𝑆𝑡 ) − 𝐷entropy (𝑆𝑡−1) > 0), we assign a higher reward
than its original value by applying a multiplier that’s greater than
1. Otherwise a multiplier lower than 1 is applied (i.e. 𝐷entropy (𝑆𝑡 ) −
𝐷entropy (𝑆𝑡−1) < 0). A scaling factor𝑚 > 0 controls the strength
of the surrogate reward. In our experiments, we find that𝑚 = 5
works well without the need for aggressive tuning. 𝐷entropy (𝑆𝑡−1)
is also concatenated into the user state 𝑢𝑠𝑡 for the model to better
learn and adapt to the proposed reward changes.

We choose multiplicative design for the reward surrogate as
opposed to an additive one with the following reason: If the original
reward for an action 𝑅𝑜𝑡 (𝑠𝑡 , 𝑎𝑡 ) is large, indicating that the user
enjoys an item, then it gets amplified even more with the multiplier
if the action also increases consumption diversity.

6.2.2 Results. Figure 6 summarizes the live A/B experiments where
we report the percentage improvements of themetrics over the base-
line REINFORCE algorithm over time. Figure 6a and 6b shows the
movements in a top-line metric capturing user overall enjoyment
on the platform, and a proxy metric for user’s long-term visiting
frequency, respectively. We see that the reward surrogate model not
only improves the top-line metric and user retention significantly,
but it also exhibits a strong learning effect over the course of the ex-
periment. This indicates that the proposed change enables users to
continuously discover and consume more diverse contents toward
an improved user experience in the long term. We also see growing
differences in the number of topic clusters consumed (Figure 6c),
which confirms the effect of the reward surrogate.

6.3 Homepage Revisits as Reward Surrogate
6.3.1 Reward Formulation. Based on the findings in Section 4 and
5, we propose to leverage homepage visits as reward surrogates:

𝑅𝑡 (𝑠𝑡 , 𝑎𝑡 ) = 𝑅𝑜𝑡 (𝑠𝑡 , 𝑎𝑡 ) · [(1 + 𝑐1(𝑇revisit (𝑆,Home) < 𝑇0)] , (11)

where the recommended item will receive a boost with multiplier
𝑐 if the user consumes the item and comes back to the homepage
with a high-quality consumption within the next𝑇0 time. 𝑐 > 0 is a
tuning parameter controlling the strength of the reward surrogate.
We tuned 𝑐 among {5, 10, 20} and 𝑐 = 10 performed the best.

6.3.2 Results. Compared with the baseline, we see an overall in-
crease in user visiting frequency (Figure 7a), which mainly comes
from the low-frequency users (Figure 7b). Figure 7c shows a signifi-
cant increase in the number of homepage visits, which confirms the
effect of the proposed reward surrogate in nudging the users toward
the desired behavior patterns (i.e. visit homepage more often). We
also see an increase in the number of satisfied consumptions (Figure
7d), which indicates a more satisfactory long-term user experience.

6Note that when the recommended item 𝑎𝑡 is not consumed, then 𝑅𝑡 (𝑠𝑡 , 𝑎𝑡 ) = 0 and
the proposed reward surrogate will have no effect.
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(a) Overall enjoyment. (b) Long-term user visiting proxy.

(c) Number of topics consumed.

Figure 6: Entropy-based diversity as reward surrogate; Results are
shown as percentage difference in metric values against baseline.

(a) Overall user visiting frequency.

(b) User visiting frequency from low-
frequency user segment (based on
pre-experiment visiting frequency).

(c) Number of homepage visits.
(d) Number of satisfied consump-
tions.

Figure 7: Homepage revisits 𝑇revisit as reward surrogate.

7 CONCLUSION
In this work, we provide analytical insights and algorithmic im-
provements for optimizing long-term user experience on recom-
mender systems. To tackle the challenges of long-term user ex-
perience being a noisy, sparse and delayed signal, we propose to
establish the association between the long-term objective and a set
of medium-term user behavior signals that can serve as surrogate
objectives. Specifically, we define and identify a set of medium-term

user behavior patterns that are predictive of the changes in user’s
visiting frequency to the platform, which includes consumption
diversity, repeated consumption behavior and curating persistent
topics/interests etc. We then validate the efficacy of those behav-
ior patterns by incorporating them as reward surrogates in an
RL-based recommender system. Live experiment results on an in-
dustrial recommendation platform shows the effectiveness of these
surrogates in improving long-term user experience, which is mani-
fested through increased user visiting frequency. Our work provides
practical guidance for algorithm designers to identify and leverage
interpretable user behavior patterns as surrogates for optimizing
long-term user experience in recommender systems.
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A APPENDIX
A.1 Full results on surrogate selection

Feature
Number of consumptions in 14d

Avg
(0, 𝑐1] (𝑐1, 𝑐2] (𝑐2, 𝑐3] (𝑐3, 𝑐4] (𝑐4, 𝑐5] (𝑐5, ∞)

𝑇revisit (Home) 0.186 0.135 0.113 0.129 0.116 0.099 0.13

𝑇 diff
revisit (Home) 0.068 0.04 0.057 0.089 0.094 0.081 0.072

𝐷entropy 0.072 0.1 0.082 0.05 0.061 0.041 0.068

𝐷diff
KL 0.061 0.059 0.066 0.063 0.074 0.052 0.062

𝐷diff
entropy 0.042 0.067 0.061 0.066 0.054 0.06 0.058

𝐷KL 0.068 0.065 0.058 0.064 0.036 0.055 0.058

𝑇revisit (Consump) 0.069 0.059 0.044 0.059 0.058 0.043 0.055

𝑅diff
repeatedCons 0.03 0.067 0.046 0.043 0.066 0.061 0.052

𝑅diff
highQualCons 0.046 0.042 0.053 0.056 0.043 0.064 0.051

𝑇revisit (Search) 0.064 0.066 0.039 0.036 0.033 0.067 0.051

𝑇 diff
revisit (Consump) 0.037 0.017 0.044 0.062 0.058 0.066 0.047

𝑅diff
persistentTopic 0.031 0.04 0.054 0.045 0.046 0.062 0.046

𝑅highQualCons 0.04 0.043 0.045 0.06 0.031 0.05 0.045

𝐷diff
ratio 0.04 0.036 0.043 0.039 0.062 0.044 0.044

𝑇 diff
revisit (Search) 0.028 0.046 0.067 0.034 0.034 0.042 0.042

𝐷ratio 0.037 0.032 0.044 0.03 0.035 0.029 0.035

𝑅repeatedCons 0.027 0.033 0.028 0.021 0.04 0.025 0.029

𝑅persistentTopic 0.028 0.023 0.027 0.027 0.033 0.035 0.029

𝑁 diff
active 0.012 0.015 0.019 0.015 0.019 0.012 0.015

𝑁active 0.014 0.014 0.01 0.011 0.009 0.011 0.012

Table 2: Feature importance results for the stratified surrogate
selection model, where the feature importance score for every fine-
grained user activity group is reported. The rows are ranked by
the average importance score across all user slices. We drop the
dependency on 𝑆 for the user activity patterns defined in Section 3
for ease of notation.
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