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ABSTRACT
Reinforcement Learning (RL) has been sought after to bring next-
generation recommender systems to further improve user experi-
ence on recommendation platforms.While the exploration-exploitation
tradeoff is the foundation of RL research, the value of exploration
in (RL-based) recommender systems is less well understood. Ex-
ploration, commonly seen as a tool to reduce model uncertainty in
regions of sparse user interaction/feedback, is believed to cost user
experience in the short term, while the indirect benefit of better
model quality arrives at a later time. We focus on another aspect of
exploration, which we refer to as user exploration to help discover
new user interests, and argue it can improve user experience even
in the more imminent term.

We examine the role of user exploration in changing different
facets of recommendation quality that more directly impact user
experience. To do so, we introduce a series of methods inspired
by exploration research in RL to increase user exploration in an
RL-based recommender system, and study their effect on the end
recommendation quality, more specifically, on accuracy, diversity,
novelty and serendipity. We propose a set of metrics to measure (RL
based) recommender systems in these four aspects and evaluate the
impact of exploration-induced methods against these metrics. In
addition to the offline measurements, we conduct live experiments
on an industrial recommendation platform serving billions of users
to showcase the benefit of user exploration. Moreover, we use
conversion of casual users to core users as an indicator of the
holistic long-term user experience and study the values of user
exploration in helping platforms convert users. Through offline
analyses and live experiments, we study the correlation between
these four facets of recommendation quality and long term user
experience, and connect serendipity to improved long term user
experience.
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1 INTRODUCTION
In the era of increasing choices, recommender systems are becom-
ing indispensable in helping users navigate the million or billion
pieces of contents available on recommendation platforms. These
systems are built to satisfy users’ information needs by anticipating
what they would be interested in consuming next. Collaborative
filtering [28, 47] and supervised learning based approaches predict-
ing users’ immediate response toward recommendations [12, 65]
such as clicks, dwell time, likes, have had enormous successes.
Researchers however are becoming increasingly aware of the limi-
tations of such approaches. First, focus on driving short-term en-
gagements such as user clicks fails to account for the long term
impact of a recommendation. Second, lack of exploration causes
these systems to increasingly concentrate on the known user in-
terests and create satiation effect, i.e., reduced enjoyment of the
content.

Reinforcement learning (and bandits) techniques have emerged
as appealing alternatives [11, 23, 67, 68] over the years. Compared
with supervised learning based approaches, RL offers two advan-
tages: 1) Exploration. (Online) RL algorithms inherently explore
regions they are less certain about. This provides a natural mecha-
nism to deviate from the current system behavior, and introduce
previously unseen contents to users; 2) Long-term user experience
optimization. As the planning horizon of these RL agents extends,
the recommender naturally shifts its focus from short-term user
engagement toward optimizing the long-term user experience on
the platform. We focus our discussion on exploration, though as
we show in the analyses it innately connects to the long-term user
experience.

The tradeoff between exploration and exploitation is central to
the design of RL agents [17, 57]. An agent learns to form a policy
to maximize returns in a changing environment by taking actions
and receiving reward/feedback from the environment. The agent
is incentivized to exploit, repeating actions taken in the past that
produced higher rewards, to maximize reward. On the other hand,
the agent needs to explore previously unseen actions in order to
discover potentially better options. Exploration in RL based rec-
ommender systems serves a similar goal, that is to expose users to
previously unseen items to discover contents the user is potentially
interested in. The benefit of exploration to counter the selection
bias of existing systems and generate training data to reduce model
uncertainty has been established [11]. Here we focus on another
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aspect of exploration that we refer to as user exploration, i.e., ex-
ploration for discovering something new for the user.

As exploration innately leads to recommending something less
pertinent to the known user interests, it is often seen as a cost to
user experience, especially in the short term. Here we argue that
recommender systems have an inherent need for exploration as
users perceive other factors of recommendation quality besides
accuracy [5, 66]. We dissect the values of user exploration by ex-
amining its role in changing different aspects of recommendation
quality that impact the user experience on recommendation plat-
forms. Together, we make the following contributions:

• Methods to Introduce User Exploration: We introduce
a collection of methods, inspired by exploration research in
RL, to improve user exploration in recommender systems.

• Metrics: We propose a set of metrics measuring the dif-
ferent aspects of recommendation quality, that is accuracy,
diversity, novelty and serendipity for RL based recommender
systems.

• Offline Analyses: We conduct an extensive set of offline
analyses to understand the values of user exploration in
changing the four aspects of recommendation quality.

• Live Experiments: We conduct live experiments of the pro-
posed methods on a commercial recommendation platform
serving billions of users and millions of items, and showcase
the value of user exploration in improving long-term user
experience on the platform.

• Serendipity for Long Term User Experience: Through
offline analyses and live experiments, we study the correla-
tion between these four aspects of recommendation quality
and the long term user experience. Using conversion of ca-
sual users to core users as an indicator of the holistic long
term user experience, we connect serendipity to improved
long term user experience.

2 RELATEDWORK
Reinforcement Learning for Recommender Systems. Deep reinforce-
ment learning, combining high-capacity function approximators,
i.e., deep neural networks, with the mathematical formulations in
classic reinforcement learning [57], has achieved enormous suc-
cess in various domains such as games, robotics and hardware
design [18, 33, 36, 52]. It has attracted a lot of attention from the
recommeder system research community as well. Shani et al. [51]
were among the first to formally formulate recommendation as a
Markov decision process (MDP) and experiment with model-based
RL approaches for book recommendation. Zheng et al. [70] applied
DQN for news recommendation. Dulac-Arnold et al. [14] enabled
RL in problem spaces with a large number of discrete actions and
showcased its performance on various recommendation tasks with
tens of thousands of actions. Liu et al. [34] tested actor-critic ap-
proaches on recommendation datasets such as MovieLens, Yahoo
Music and Jester. Set recommendation using RL has been studied
in [11, 23, 69]. In recent years, we also start seeing success of RL in
real-world recommendation applications. Chen et al. [11] scaled a
batch RL algorithm, i.e., REINFORCE with off-policy correction to
a commercial platform serving billions of users and tens of millions

of contents. Hu et al. [22] tested an extension of the deep deter-
ministic policy gradient (DDPG) method for learning to rank on
Taobao, a commercial search platform.

Exploration in Reinforcement Learning. The exploration/exploitation
dilemma has long been studied in multi-armed bandits and clas-
sic reinforcement learning [17, 57]. Exploration methods are con-
cerned with reducing agents’ uncertainty of the environment re-
ward and/or the dynamics. For the stochastic bandits problems,
Upper Confidence Bound (UCB) [30] and Thompson Sampling (TS)
[4, 10, 59] are among the most well known techniques with both
theoretical guarantees and empirical successes. In classic reinforce-
ment learning with tabular settings, count-based exploration tech-
niques quantifying the uncertainty based on the inverse square root
of the state-action visit count, can be seen as extension of these
techniques to Markov Decision Processes (MDPs). Tang et al. [58]
further generalizes counted-based methods to deep RL with high-
dimensional state spaces. Another camp of methods, commonly
referred to as intrinsic motivation [21, 24, 48, 56], encourages the
agents to explore regions leading up to surprises. The surprise factor
is often measured by the agents’ predictive errors on environment
reward or dynamics, or equivalently information gain the agents
can acquire by taking an action under the current state. Bellemare
et al. [6] unifies count-based exploration and intrinsic motivation
through the lens of information gain or learning progress. Our
work takes inspiration from these existing works, and re-designs
the algorithms to fit more closely with the recommendation setup.

Diversity, Novelty and Serendipity of Recommender Systems. While
early recommendation research has focused almost exclusively on
improving recommendation accuracy, it has become increasingly
recognized that there are other factors of recommendation quality
contributing to the overall user experience on the platform. Her-
locker et al. [19] in their seminal work of evaluating collaborative
filtering based recommender systems defined various metrics to
measure recommendation accuracy, coverage, novelty as well as
serendipity. Diversity is another important aspect that has been
extensively studied [3, 5]. Diversification algorithms are used to
increase coverage of the full range of user interests, and to counter
the saturation effect of consuming similar contents [72]. Zhou et al.
[71] studied the dilemma between accuracy and diversity, and pro-
posed a hybrid approach to balance the two. Novelty [8] is closely
related to long tail recommendation [62], measuring the capacity
of the recommender systems to make predictions and reach the full
inventory of contents available on the platforms. One of the early
definitions of serendipity was introduced in [19], which captures
the degree to which a recommendation is both relevant and surpris-
ing to users. Zhang et al. [66] proposed a hybrid rank-interpolation
approach to combine outputs of three LDA algorithms [7] focusing
on either accuracy, diversity or serendipity to achieve a balance
between these factors in the end recommendations. Oku and Hat-
tori [41] proposed a fusion based technique to mix items users
expressed interest on based on item attributes in order to introduce
serendipitous contents. Our work measures the effect of exploration
on recommendation accuracy, diversity, novelty and serendipity,
and connects these factors to long term user experience.
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3 BACKGROUND
We base our work on the REINFORCE recommender system intro-
duced in [11], in which the authors framed a set recommendation
problem as a Markov Decision Process (MDP) (S,A, P,R, ρ0,γ ).
Here S is the state space capturing the user interests and context,
A is the discrete action space containing items available for recom-
mendation, P : S × A × S → R is the state transition probability,
and R : S × A → R is the reward function, with r (s,a) note the
immediate reward of action a under state s . ρ0 is the initial state
distribution, and γ the discount for future rewards.

Let Ht = {(A0,a0, r0), · · · , (At−1,at−1, rt−1)} denote an user’s
historical activities on the platform up to time t , where At ′ stands
for the set of items recommended to the user at time t ′, at ′ denotes
the item the user interacted with at t ′ (at ′ can be null), and rt ′

captures the user feedback (reward) on at ′ (rt ′ = 0 if the user
did not interact with any item in At ′ ). The historyHt is encoded
through a recurrent neural network to capture the latent user state,
that is, ust = RNNθ (Ht ). Given the latent user state, a softmax
policy over the item corpus A is parameterized as

πθ (a |st ) =
exp(u⊤st va )∑

a′∈A exp(u⊤st va′)
, ∀a ∈ A (1)

which defines a distribution over the item corpus A conditioning
on the user state st at time t . Here va stands for the embedding of
the item a. The agent then generates a set of recommendationAt to
user at time t according to the learned softmax policy πθ (·|st ). The
policy parameters θ are learned using REINFORCE [60] so as to
maximize the expected cumulative reward over the user trajectories,

max
θ

J(πθ ) = Es0∼ρ0,At∼πθ (· |st ),st+1∼P(st ,At )

[ T∑
t=0

r (st ,at )

]
(2)

≈ Est∼d
πθ
t (s),at∼πθ (· |st )

[Rt (st ,at )] .

where Rt = Ir (st ,at )>0 ·
∑T
t ′=t γ

t ′−t r (st ′ ,at ′) is the discounted cu-
mulative reward starting from time t .

RL was designed as an online learning paradigm in the first
place [57]. Note that the expectation in eq. 2 is taken over the tra-
jectories generated according to the learned policy, and dπθt (s) is
the discounted state visitation probability under πθ [32]. One of the
main contribution of [11] is bringing the REINFORCE algorithm to
the offline batch learning setup commonly deployed in industrial
recommender systems. The authors applied a first-order approxi-
mation [2] of importance sampling to address the distribution shift
caused by offline training, resulting in a gradient of the following:

∇θJ(πθ ) =
∑

st∼d
β
t (s),at∼β (· |st )

[
πθ (at |st )

β (at |st )
Rt (st ,at )∇θ logπθ (at |st )

]
.

(3)
Here β(·|s) denotes the behavior policy, i.e., the action distribution
conditioning on state s in the batch collected trajectories. dβt (s) is
the discounted state visitation probability under β . This importance
weight is further adapted to accommodate the set recommendation
setup. We refer interested readers to [11] for more details.

To balance exploration and exploitation, a hybrid approach that
returns the top K ′ most probable items, while sampling the rest K −

K ′ items according to πθ (Boltzmann exploration [13]), is employed
during serving.

4 METHOD
Here we introduce three simple methods inspired by exploration
research in RL to increase user exploration in the REINFORCE rec-
ommender system during training. That is, to recommend content
less pertinent to the known user interests, and to discover new user
interests.

4.1 Entropy Regularization
The first method promotes recommending contents less pertinent
to the known user interests by encouraging the policy πθ (·|s) to
have an output distribution with high entropy [61]. Mnih et al. [38]
observed that adding entropy of the policy to the objective function
discourages premature convergence to sub-optimal deterministic
policies and leads to better performance. Pereyra et al. [46] con-
ducted a systemic study of entropy regularization and found it to
improve a wide range of state-of-the-art models.

We add of the entropy to the RL learning objective as defined in
eq. 2 during training. That is,

max
θ

J(πθ ) + α
∑

st∼d
β
t (s)

H (πθ (·|st )) . (4)

where the entropy of the conditional distribution πθ (·|s) is defined
as H (πθ (·|s)) = −

∑
a∈A πθ (a |s) logπθ (a |s). Here α controls the

strength of the regularization. The entropy is equivalent to the neg-
ative reverse KL divergence of the conditional distribution πθ (·|s) to
the uniform distribution. That is, H (πθ (·|s)) = −DKL(πθ (·|s)| |U )+

const , where U stands for a uniform distribution across the action
space A. As we increase this regularization, it pushes the learned
policy to be closer to a uniform distribution, thus promoting explo-
ration.

4.2 Intrinsic Motivation and Reward Shaping
The second method helps discovering new user interests through
reward shaping. The reward function r (s,a) as defined in eq. 2, de-
scribes the (immediate) value of a recommendation a to a user s . It
plays a critical role in deciding the learned policy πθ . Reward shap-
ing, transforming or supplying additional rewards beyond those
provided by the MDP, is very effective in guiding the learning
of RL agents to produce policies desired by the algorithm design-
ers [1, 27, 40].

Exploration has been extensively studied in RL [6, 42–44, 55],
and has been shown to be extremely useful in solving hard tasks,
e.g., tasks with sparse reward and/or long horizons, and . These
works can be roughly grouped into two categories. One concerns
quantifying the uncertainty of the value function of the state-action
pairs so the agent can direct its exploration on regions where it
is most uncertain. The other uses a qualitative notion of curiosity
or intrinsic motivation to encourage the agent to explore its en-
vironment and learn skills that might be useful later. Both camps
of methods later adds an intrinsic reward r i (s,a), either capturing
the uncertainty or curiosity to the extrinsic reward re (s,a) that
is emitted by the environment directly, to help the agent explore
the unknown or learn new skills. That is, transforming the reward

87



RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

function to
r (s,a) = c · r i (s,a) + re (s,a), (5)

where c controls the relative importance of the intrinsic reward
w.r.t. the extrinsic reward emitted by the environment.

Schmidhuber [49] formally captures the theory of creativity, fun
and curiosity as an intrinsic desire to discover surprising patterns
of the environment, and argues that a curiosity-driven agent can
learn even in the absence of external reward. Our proposal bears
the same principle by rewarding the agent more when it discovers
some previously unknown patterns of the environment, that is
the user. Let Ret (st ,at ) = Ir e (st ,at )>0 ·

∑T
t ′=t γ

t ′−t re (st ′ ,at ′) be
the discounted cumulation of the extrinsic reward on the state-
action pair (st ,at ) observed on the trajectory. We then define the
cumulative reward Rt (st ,at ) used for the gradient update in eq. 3
as

Rt (st ,at ) =


c · Ret (st ,at ) if recommending at under st

leads to discovery of previously
unknown user interests;

Ret (st ,at ) otherwise.

(6)

Here c > 1 is a constant multiplier.
As explained in Section 3, the agent perceives the environment,

that is the user interests and context, through encoding user’s
historical activitiesHt = {(A0,a0, r0), · · · , (At−1,at−1, rt−1)}. One
can imagine a large update (surprise) to the agent’s modeling of
the environment if an item at recommended given the state st is
1) drastically different from any of the items the user interacted
with in the past; 2) enjoyed by the user, i.e., re (st ,at ) or Re (st ,at )
is high. These two conditions, surprise and relevance, align with the
serendipity metrics we are going to detail in Section 5.5.

Tomeasure the surprise ofat , we defineIt = {at ′ ,∀t ′ < t and rt ′ >
0} as the set of items the user interacted with up to time t . As rec-
ommendation items are often associated with various attributes
as described in Section 5.1, we use these attributes to measure the
similarity (or difference) of a candidate action at towards It . For
example, we consider an item at surprising (different) if its topic
cluster is different from any of the items in It .

The multiplicative design in eq. 6 naturally accomplishes the
second condition, that is, relevance. Comparing with the additive
form (eq. 5), themultiplicative design results in: 1) a candidate action
at with zero extrinsic reward, i.e., Ret (st ,at ) = 0 will NOT receive
any additional reward even if being under-surfaced; 2) an action at
receiving higher extrinsic reward Ret (st ,at ) will be rewarded even
more compared with those that are equally surprising but received
lower extrinsic reward. This contrasts with the additive form where
the extrinsic rewards observed does not influence the intrinsic
reward. In other words, the additive design gives a uniform boost to
actions based entirely on surprise. The multiplicative design on the
other end, favors surprising actions that actually lead to improved
user experience, indicated by higher extrinsic reward.

4.3 Actionable Representation for Exploration
The third method reinforces the newly discovered user interest
through representation learning. Learning effective representation
is critical to improve the sample efficiency of many machine learn-
ing algorithms, and RL is no exception. Most prior work on repre-
sentation learning for RL has focused on generative approaches,

learning representations that capture all underlying factors of varia-
tion in the observation space in a more disentangled or well-ordered
manner. Self-supervised learning [20, 25, 50, 54] to capture the full
dynamics of the environment has also attracted a lot of attentions
lately. Ghosh et al. [16] instead argue to learn functionally salient
representations: representations that are not necessarily complete
in terms of capturing all factors of variation in the observation
space, but rather aim to capture those factors of variation that are
important for decision making – that are "actionable."

The REINFORCE agent introduced in Section 3 describes the
environment, i.e., the user, through encoding his/her historical
activitiesHt . That is, ust = RNNθ (Ht ). When an user interacted
with a surprising item at (to the agent) and gave high reward, the
user state ust should be updated to capture the new information so
the agent can act differently next. That is, tomake recommendations
according to the newly acquired information about the new interest
of the user. To aid the agent in capturing this information in its state,
we extend Ht with an additional bit, indicating whether or not an
item the user interacts with is surprising and relevant. That is, we
expand Ht = {(A0,a0, r0, i0), · · · , (At−1,at−1, rt−1, it−1)}, where
it ′ = 1 if 1) the attribute of at (such as topic cluster) is different
from that of any items in It ′ (being a surprise) and; 2) rt > 0 (being
relevant). Here It ′ is the list of items the user has interacted with
up to time t ′. This feature is then embedded and consumed by the
RNN along with other features describing the item at .

5 MEASUREMENT
Personalization has been the cornerstone of modern recommender
systems. It aims to produce targeted and accurate recommendations
based on user historical activities. Overly focusing on the accuracy
aspect of recommendation, however, runs the risk of exposing users
only to a concentrated set of contents. This could attract user atten-
tion in the near term, but likely hurt user experience in the long run.
There has been a growing body of work examining factors other
than accuracy in shaping user’s perception of recommendation
quality [9, 19, 35, 66, 72, 72]. In particular, aspects such as diversity,
novelty and serendipity of recommendations have been studied.
Here we design metrics to measure these four aspects for a RL
based recommender system. Some of the metrics measure directly
on the learned policy πθ , and thus apply only to systems produc-
ing a distribution over the content vocabulary. Others measure on
the recommendation set Aπθ generated by acting according to πθ
(taking most probable items) 1, which are generic for any types
of recommender systems 2. These metrics bear similarity to many
prior works in quantifying the four factors of recommendation
quality [5, 8, 15, 19, 26, 29, 66].

5.1 Attributes
We first introduce two item attributes that are used to define both
the surprise factor in eq (6) as well as the metrics:

1We employed the hybrid policy, i.e., choosing top K ′ and sample K − K ′ according
to πθ as explained at the end of Section 3 for all the live experiments. For offline
comparisons, we focus on the top K ′ items to reduce randomness introduced through
sampling.
2Note that for all themetrics we defined, it is straight-forward to define the policy-based
or set-based counterpart, and the trends observed in offline analyses are consistent
between these two sets of metrics, we thus only report one to save space.
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Topic cluster. A topic cluster for each item is produced by: 1)
taking the item co-occurrence matrix, where entry (i, j) counts the
number of times item i and j were interacted by the same user
consecutively; 2) performing matrix factorization to generate one
embedding for each item; 3) using k-means to cluster the learned
embeddings into 10K clusters; 4) assigning the nearest cluster to
each item.

Content provider. Content provider is another attribute of in-
terest as: 1) we observed consistency between contents produced
by the same provider, e.g., a food blogger often writes about specific
cuisines; 2) we are interested in understanding the importance of
content-provider diversity/novelty [37, 64] in influencing long term
user experience.

5.2 Accuracy
Arguably the most important property of a recommender is to be
able to retrieve contents the user is interested in consuming. We
compute the mean average precision at K = 50 (mAP@50) [63]
on the recommended set Aπθ to measure the accuracy, that is the
average precision of identifying an item the user is interested in
consuming among Aπθ .

5.3 Diversity
Diversity measures the number of distinct faucets the recommen-
dation set contains. Many measurements of set diversity have been
proposed [39, 45, 53]. Among them, the average dissimilarity of all
pairs of items in the set is a popular choice.

Diversity(Aπθ ) = Es ∈d β

1 −
1

|Aπθ |(|Aπθ | − 1)

∑
i, j ∈Aπθ ,i,j

sim(i, j)


(7)

We define the similarity between two items i and j both on topic
level and on content provider level. That is, Sim(i, j) = 1 if i and
j belongs to the same topic cluster, and 0 otherwise. Similarly for
content provider.

5.4 Novelty
The two terms of novelty and serendipity have been used inter-
changeably in the literature. In this work, we use novelty to focus
on the global popularity-based measurements and serendipity to
capture the unexpectedness/surprise of the recommendation to a
specific user. That is, novelty concerns the recommender system’s
capacity to suggest something a user is unlikely to know about
already or discover by themselves. Zhou et al. [71] first introduced
the notion of self-information of a recommended item, which mea-
sures the unexpectedness of a recommended item relative to its
global popularity.

I (a) = − logp(a) = − log
# users consumed item a

# users
(8)

= − log (# users consumed item a) + const

Herep(a)measures the chance a randomuserwould have consumed
item a. By definition, a globally "under-explored" item (tail content)
will have higher self-information. With the definition of item-level
self-information, we can then measure novelty of the learned policy

πθ as

Novelty(πθ ) = Est ∈d
β
t

[ ∑
a∈A

πθ (a |st )I (a)

]
, 3 (9)

A learned policy πθ that casts more mass on items with higher self-
information, being able to recommend "under-explored" items, is
deemedmore novel. We can define the novelty metrics for attributes
similarly by looking at the self-information of the attribute instead,
e.g., popularity of the content provider.

5.5 Serendipity
Serendipity captures the unexpectedness/surprise of a recommen-
dation to a specific user. It measures the capability of the recom-
mender system to recommend relevant contents outside of the
user’s normal interests. There are two important factors in play
here: 1) unexpectedness/surprise: as a counter example, a recom-
mendation of John Lenon to listeners of The Beatles will not con-
stitutes a surprising recommendation; 2) relevance: the surprising
contents should be of interest to the user. In other words, serendip-
ity measure the ability of the recommender to discover previously
unknown (to the recommender) interests of the user.

We define the serendipity value of a recommendation at w.r.t. a
user with interaction history of It as

Stopic (at |st ,It ) =


1 if re (st ,at ) > 0 and at belongs to

a different topic cluster than any
item in It ;

0 otherwise

(10)

Again we can define the content-provider level serendipity value
similarly. With the serendipity value of an item defined, we can
then quantify the serendipity of the recommendation set Sπθ as.

Serendipity(Aπθ ) = E
st ∈d

β
t

[
1

|Aπθ |

∑
a∈Aπθ

Stopic (at |st ,Ht )

]
,

(11)

5.6 Long Term User Experience
Past work has suggested connections between these recommen-
dation qualities toward long term user experience, either through
surveys or interviews [5, 66]. We use user returning to the plat-
form, and user moving from a low-activity bucket to a highly-active
one on the platform as the holistic measurement of improved long
term user experience, and establish the connection between these
measurements and long term user experience.

6 OFFLINE ANALYSES
We conducted an extensive set of offline experiments comparing
the exploration strategies introduced in Section 4. Specifically, we
built these exploration approaches onto the baseline REINFORCE
recommender described in Section 3. We evaluate them by com-
puting the set of metrics defined in Section 5 and compare the
metric movements between different hyper-parameter settings and
different exploration methods.

3Note that for the novelty metric, we ignore the constant during evaluation, as a result
the numbers reported in Section 6 are negative.
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Accuracy Diversity Novelty Serendipity
mAP@50 topic provider item provider topic provider

baseline 0.070 ± 0.002 0.784 ± 0.003 0.903 ± 0.003 -10.160 ± 0.036 -12.690 ± 0.049 0.037 ± 0.002 0.078 ± 0.003
α = 0.1 0.064± 0.002 0.817 ± 0.003 0.915± 0.004 -9.612 ± 0.020 -12.403 ± 0.009 0.038 ± 0.002 0.072 ± 0.006
α = 0.5 0.053 ±0.002 0.861 ± 0.004 0.940 ± 0.004 -9.130 ± 0.040 -12.120 ± 0.089 0.033 ± 0.002 0.056 ± 0.004
α = 1.0 0.047 ± 0.003 0.871 ± 0.009 0.942 ± 0.002 -8.913 ± 0.158 -11.990 ± 0.096 0.029 ± 0.003 0.053 ± 0.002
α = 10.0 0.033 ± 0.008 0.909 ± 0.023 0.965 ± 0.013 -8.653 ± 0.192 -11.850 ± 0.114 0.021 ± 0.005 0.037 ± 0.010

Table 1: Effect of entropy regularization with regularization coefficient in [0.1, 0.5, 1.0, 10.0].

Accuracy Diversity Novelty Serendipity
mAP@50 topic provider item provider topic provider

baseline 0.070 ± 0.002 0.784 ± 0.003 0.903 ± 0.003 -10.160 ± 0.036 -12.690 ± 0.049 0.037 ± 0.002 0.078 ± 0.003
topic, d = 1 0.061± 0.002 0.864 ± 0.003 0.925 ± 0.002 -10.247 ± 0.017 -12.647 ± 0.097 0.042 ± 0.001 0.077 ± 0.002
topic, d = 7 0.063 ± 0.002 0.860 ± 0.004 0.923 ± 0.004 -10.253 ± 0.037 -12.753 ± 0.041 0.044 ± 0.000 0.075 ± 0.002
topic, d = 365 0.062 ± 0.001 0.855 ± 0.005 0.923 ± 0.002 -10.237 ± 0.053 -12.713 ± 0.057 0.043 ± 0.001 0.075 ± 0.001
provider, d = 7 0.059 ± 0.002 0.807 ± 0.003 0.954 ± 0.001 -10.213 ± 0.048 -12.560 ± 0.057 0.039 ± 0.001 0.087 ± 0.004

Table 2: Effect of intrinsic motivation with different definitions of surprise.

Accuracy Diversity Novelty Serendipity
mAP@50 topic provider item provider topic provider

baseline 0.070 ± 0.002 0.784 ± 0.003 0.903 ± 0.003 -10.160 ± 0.036 -12.690 ± 0.049 0.037 ± 0.002 0.078 ± 0.003
repre. alone 0.073 ± 0.002 0.785 ± 0.004 0.905 ± 0.004 -10.110 ± 0.042 -12.620 ± 0.061 0.038 ± 0.001 0.085 ± 0.003

intrinsic alone 0.063 ± 0.002 0.860 ± 0.004 0.923 ± 0.004 -10.253 ± 0.037 -12.753 ± 0.041 0.044 ± 0.000 0.075 ± 0.002
repre. + intrinsic 0.063 ± 0.001 0.859 ± 0.003 0.920 ± 0.004 -10.200 ± 0.025 -12.690 ± 0.012 0.046 ± 0.001 0.077 ± 0.002

Table 3: Effect of the actionable representation when combined with intrinsic motivation.

6.1 Dataset
We conducted 3 runs of experiments for each comparison and
report the mean and standard deviation of the metrics. For each
experiment run, we extracted close to a billion user trajectories from
a commercial recommendation platform. Each trajectory HT =

{(st ,At ,at , rt ) : t = 0, . . . ,T }, as described in Section 3, contains
user historical events on the platform. The lengths of trajectories
between users can vary depending on their activity level.We keep at
most 500 historical pages with at least one positive user interaction
(nonzero rt ) for each user. Among the collected trajectories, we hold
out 1% for evaluation. We restrict our action space (item corpus)
to the most popular 10 million items in the past 48 hours on the
platform. Our goal is to build a recommender agent that can choose
among the 10 million corpus the next set of items for users to
consume so as to maximize the cumulative long-term reward.

6.2 Entropy Regularization
Themost straightforward knob to tune up and down the exploration
strength for entropy regularization is the regularization coefficient
α as defined in eq. 4. We compare the baseline method, a REIN-
FORCE agent maximizing only the expected return as defined in
eq. 2, with added entropy regularizationwithα in [0.1, 0.5, 1.0, 10.0].

As shown in Table 1, entropy regularization is an extremely
efficient method to introduce diversity and novelty to the system,
at the cost of reduced accuracy. When the regularization strength is
large, it also significantly drops the system’s capability to introduce
serendipitous contents to users because of the loss of relevance.
For example, a regularization strength of α = 1.0 drops the topic
serendipity value by −21.6% (0.037 → 0.029).

6.3 Intrinsic Motivation
One of the obvious hyper-parameters to adjust the exploration
strength for the intrinsic motivation approach is to tune the boost-
ing factor c defined in eq. 6. Here we study the impact of the more
interesting variants.

First, on which attribute to use to define surprise. We experi-
mented with defining surprise by topic cluster (denoted as "topic"
in Table 2) and content provider (denoted as "provider" in Table 2).
Second, on the length of the user historical events used to define
surprise. As explained in [66], users’ perception of surprise of con-
tents can drift over time. Contents that the user interacted in the
past, but has not been served and interacted for a long time, can be
deemed surprising when being resurfaced again. We experimented
with having It contain all the items the user interacted with in the
past one day, one week and one year (denoted as d = 1, d = 7 and
d = 365 respectively in Table 2).

Table 2 summarizes the comparison between different variants of
the intrinsic motivation proposal. Similar to entropy regularization,
all variants improve on diversity at the cost of lower accuracy. This
method does not change the novelty metrics significantly, neither
on the item level nor content provider level. We thus conclude that
tail contents are not necessarily more serendipitous (relevant and
surprising) than popular ones. We do see a significant improvement
in the serendipity metrics, even though the overall accuracy of
these methods turn out unfavorable comparing with the baseline.
As an example, the variant which uses topic cluster and a historical
window size of 7 days, improves the serendipity level by +18.9%
(0.037 → 0.044) even though the overall accuracy measured by
mAP@50 was dropped by −13.7% (0.070 → 0.063). Attributes.
Offline analyses showed both definitions of surprise based on topic
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Figure 1: Mean input gate activation on historical events that are surprising (left) vs
not (right). Adding the representation helps RNN differentiate better between histor-
ical events that are surprising and those that are not.

Figure 2: Improvement on user re-
turning to platform.

cluster and content provider are equally effective in optimizing
different angles of serendipity. That is topic cluster definition im-
proves offline topic serendipity metrics by +18.9% from 0.037 to
0.044, and content provider definition improves content provider
serendipity for +11.5% from 0.078 to 0.087. We however do see very
different performance in user metrics in live experiments as shown
in Section 7.1 below, suggesting one angle (topic serendipity) is
more important than the other (content provider serendipity) in
optimizing the overall user experience.

Window sizes. As we extend the historical window used to
define surprise, i.e., having It contain longer user history, the def-
inition of surprise becomes stricter. An item is less likely to be
surprising/different when comparing with a longer history than
a shorter one. As a result the percentage of state-action pairs re-
ceiving the extra multiplier of c > 1 is reduced. In the datasets, the
percentage is reduced from 36% → 19% → 12% when the window
size is extended from 1 → 7 → 365 days. The intrinsic motiva-
tion boost is applied to a smaller and smaller set of state-action
pairs. The relative change on diversity related metrics is marginal
between these variants. The variant with window size of d = 7
scored the highest on the topic serendipity metric, which is defined
using a window size of one year.

6.4 Actionable Representation
In this set of experiments, we compare four setups: 1) baseline:
the baseline REINFORCE algorithm; 2) repre. alone: the baseline
REINFORCE with the actionable representation, i.e., the additional
bit indicating if the item at is serendipitous at state st according to
user historical interactions It ; 3) intrinsic alone: the baseline RE-
INFORCE with intrinsic motivation for reward shaping; 4) repre. +
intrinsic: the baseline REINFORCE adding both the intrinsic motiva-
tion and the actionable representation. As shown in Table 3, adding
the indicator alone (row 2) and adding the indicator along with
the intrinsic motivation (row 4) resulted in very different metrics.
Adding the indicator alone without the reward shaping performs
very similarly to the baseline method, suggesting the representation
is more useful when combined with the reward shaping. We see
+24.3% improvement in the serendipity value comparing (row 4)
to (row 1) (0.037 → 0.046), and +4.5% improvement comparing to
(row 3) (0.044 → 0.046). This suggests that the added representation

is indeed helpful for decision making when the intrinsic motiva-
tion is rewarding serendipitous actions, i.e. actions that discover
previously unknown user interests.

To gain more insight into how the agent utilizes the additional
bit indicating whether or not a historical event is surprising when
provided, we compare the learning of the baseline REINFORCE
algorithm with intrinsic motivation alone (shown in orange in
Figure 1) vs the one combined with both the intrinsic motivation
and the actionable representation (shown in cyan in Figure 1). The
RNN [31] Chen et al. [11] used to encode the user historyHt has an
important gate named input gate. This gate controls how much the
RNN is updating its hidden state to take into account a new input
(event). We take the activation values of the input gates across the
user trajectory, and separate the values in two groups: the ones
on historical events that are considered surprising and relevant
(shown in Figure 1 left), and the ones on historical events that are
not (shown in Figure 1 right). Comparing the left and right figures,
we can see that by adding this additional information, the RNN
is able to differentiate better between historical events that are
serendipitous and those that are not. At the end of training, the
mean activation for events that are surprising and relevant (left)
is at 0.1765 (+1.4% higher) for intrinsic motivation + actionable
representation compared with 0.1741 for intrinsic motivation alone.
The mean activation for events that are NOT serendipitous (right)
is at 0.1409 (−11.2% lower) for intrinsic motivation + actionable
representation compared with 0.1586 for intrinsic motivation alone.
This suggests that relying on the reward alone, RNN can still recog-
nize the difference between these two groups of events and perform
slightly larger update when the historical event is considered sur-
prising. Adding the feature helps RNN differentiate the two groups
better.

7 LIVE EXPERIMENTS AND LONG TERM
USER EXPERIENCE

We conduct a series of live A/B tests on a industrial recommen-
dation platform serving billions of users to evaluate the impact
of the proposed exploration approaches. The control serves the
base REINFORCE agent as described in Section 3. The agent selects
hundreds of candidates from a corpus of 10 million. The returned
candidatesAπθ , along with others, are ranked by a separate ranking
system before showing to the users. We ran three separate experi-
ments: 1) Entropy regularization: serving the REINFORCE agent
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(a) Entropy Regularization (b) Intrinsic motivation (c) Intrinsic Motiv. + Actionable Repre.

Figure 3: Overall user enjoyment improvement by comparing (a) Entropy regularization vs base REINFORCE; (b) Intrinsic
motivation vs base REINFORCE; (c) Intrinsic motivation + Actionable representation vs Intrinsic motivation.

with entropy regularization as explained in Section 4.1; 2) Intrinsic
motivation: serving the REINFORCE agent with intrinsic motiva-
tion to discover new user interest (using topic cluster attributes
with a history window of 7 days and a serendipity boost c = 4)
as explained in Section 4.2; 3) Intrinsic Motivation + Actionable
Representation: serving the REINFORCE agent with both the in-
trinsic motivation and the actionable representation as introduced
in Section 4.3. We compare 1) and 2) to the baseline REINFORCE
system as described in Section 3 as control to measure the effect of
entropy regularization and intrinsic motivation respectively, and
3) to 2) as control to measure the additional value of introducing
the actionable representation on top of intrinsic motivation. We
first summarize the live experiment results of these experiments
in Section 7.1, and later measure several aspects of long term user
experience in Section 7.2. In the end, we establish the connection be-
tween exploration and different aspects of recommendation quality
toward improving long term user experience.

7.1 Results
Figure 3 summarizes the performances of these exploration ap-
proaches on the top-line metric capturing user overall enjoyment
of the platform. As shown in Figure 3a (α = 0.1 in red, and α = 0.5
in blue), although entropy regularization increases diversity and
novelty in both offline and live experiments, it does not lead to
significant improvement on the user enjoyment. In other words,
increased diversity or novelty alone does not necessarily lead to bet-
ter user experience. When we increase the regularization strength
to α = 0.5, we see slightly worse live metrics.

Comparing with entropy regularization (Figure 3a), intrinsic
motivation (Figure 3b) and its combination with actionable repre-
sentation (Figure 3c), not only significantly improve on the top-line
metric, but also exhibit a strong learning effect over the course
of the experiments 4. We compare the offline measurement on
accuracy, diversity, novelty and serendipity between entropy reg-
ularization with α = 0.5 (Table 1 row 3) and intrinsic motivation
(Table 3 row 3) and its combination with actionable representation
(Table 3 row 4) and make the following observations: 1) the entropy
regularization method with α = 0.5 achieves very similar diversity
metrics comparing to intrinsic motivation or its combination with
4The intrinsic motivation experiment had been running for 6 weeks, while the action-
able representation experiment 2 weeks.

actionable representation. All three methods reach a topic diversity
around 0.86, and content provider diversity around 0.93; 2) The
entropy regularization method achieved slightly higher novelty
metric, both in item level and content provider level; 3) The metrics
that entropy regularization loses is on accuracy and serendipity. 4)
Intrinsic motivation method and its combination with actionable
representation have favorable improvement on serendipity com-
paring with the baseline REINFORCE algorithm even though their
accuracy numbers are worse. In conclusion, intrinsic motivation
and its combination with actionable representation compare favor-
ably to the baseline REINFORCE and entropy regularization only
in the serendipity metrics offline. In live experiments, the intrin-
sic motivation and its combination with actionable representation
were shown to significantly improve over the baseline REINFORCE
and entropy regularization, as shown in Figure 3 (middle and right).
Combining the offline and live experiment observations, we hypoth-
esize that serendipity is an important faucet of recommendation
quality that leads to improved long term user experience. We also
conducted another group of live experiments defining surprise for
optimization using content provider rather than topic. The experi-
ment turns out neutral on the top-line metric, which suggest topic
serendipity is more connected with long term user experience than
content provider.

Another top-line metric that we keep track of is the number of
days users returning to the platform. For both the intrinsic moti-
vation and actionable representation treatment, we observed sig-
nificant improvement on this metric as well, suggesting users are
encouraged to return to the platform due to better recommendation
quality. Figure 2 shows the improvement of user returning in the
actionable representation experiment, comparing with the base
REINFORCE with intrinsic motivation as control, suggesting that
aiding the representation learning with the serendipity information
further improves the learned policy, leading to better overall user
experience.

7.2 Long Term User Experience
Learning Effect of Intrinsic Motivation. To better understand
the effect of intrinsic motivation and reward shaping in the long
term, we examine the temporal trend of the live metrics in addition
to the aggregated metrics reported above. For the 6-week experi-
ment on intrinsic motivation, we look at week-over-week metrics
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(a) Number of topic clusters. (b) Difference in (a) over time. (c) Entropy of topic clusters. (d) Difference in (c) over time.

Figure 4: Learning effect: Temporal trend in number and entropy of topic clusters users interactedwith during the experiment.

(a) User activity level definition. (b) State transition matrix change between treatment and control.

Figure 5: User activity level transition for actionable representation.
by aggregating user activities within each week. Specifically, we
track the number of unique topic clusters the user has interacted
with over every week, as well as the entropy of those topic clusters.
Suppose the user has interacted with Ni items from topic cluster i ,
then the entropy of his/her history is computed as −

∑
i p̂i loд(p̂i ),

where p̂i = Ni/
∑
i Ni is the proportion of items interacted with

that are from topic cluster i .
Figure 4 shows the comparison between control and treatment,

where the treatment group has a boosting multiplier of 4 for un-
known user interests as in Eq. (6). Compared with users in the
control group which does not have the reward shaping, users in
the treatment group have consistently interacted with more topic
clusters (Fig 4a) and generated a higher entropy over cluster distri-
butions (Fig 4c) over the whole experiment period. More interest-
ingly, the amount of improvements over control is increasing over
time (Fig 4b and 4d). This suggests a learning effect over time from
exploration, which enables users to continuously find and engage
with new topics.

User Activity Levels. Users who come to the recommendation
platform are heterogeneous in terms of activity levels. Some users
visit the platform occasionally, while others visit the platform more
regularly and consistently. The long-term goal of a recommendation
platform is to not only satisfy the user’s need in the current session,
but ideally to see them return to the recommendation platform
more often in the future.

We would like to see if adding exploration in the recommenda-
tion has any effect on moving user activity levels. We define four
user activity levels in terms of how many days they are active on
the platform in a 2-week period, which is shown in Fig 5a. For

example, a user being casual means that he/she has been active for
1 to 4 days in the last 14 days. Users can become more active or less
active depending their experience on the platform as well as exoge-
nous factors not control by recommendation. Suppose the goal of a
recommendation platform is moving causal users to become core
users. An intuitive way to measure the conversion is by counting
the number of users who start off casual, and end up core. This
can be realized with a user activity level transition matrix, which
measures the movement between different user activity levels.

We examine user activity level before the experiment start date
and at the end of the experiment for every treatment group to
compute the transition matrix, and compare with control. Figure 5b
shows the percentage difference of the transition matrices between
the actionable representation treatment group and control. We see
that there is a significant increase in casual-to-core conversion rate.
This suggests that a successful exploration strategy can result in
a desired user movement as less active users are becoming more
engaged on the platform.

8 CONCLUSION
We present a systemic study to understand the values of exploration
in recommender systems beyond reducing model uncertainty. We
examine different user exploration strategies in affecting the four
facets of recommendation quality, i.e., accuracy, diversity, novelty
and serendipity, that contribute directly to user experience on the
platform. We showcase exploration strategies that oriented toward
discovering unknown user interests in positively influencing user
experience on recommendation platforms. Using conversion of ca-
sual users to core users as an indicator of the holistic long term

93



RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

user experience, we connects serendipity to improved long term
user experience. We believe these are important first steps in under-
standing and improving exploration and serendipity in (RL based)
recommender systems, and providing foundation for future effort
in this direction.
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